login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A226448 Composite squarefree numbers n such that the ratios (n - 1/2)/(p - 1/2) are integers for each prime p dividing n. 6

%I

%S 260054438,597892523,1200695738,3287998643,3423456563,10524308498,

%T 13292859563,15646705718,19441707170,33309521438,38848586123,

%U 43312628678,61899936935,72422400713,75439031063,85338414662,112419230963,132624705038,136084511063,141236121758

%N Composite squarefree numbers n such that the ratios (n - 1/2)/(p - 1/2) are integers for each prime p dividing n.

%C Also composite squarefree numbers n such that (2p - 1) | (2n - 1).

%H Giovanni Resta, <a href="/A226448/b226448.txt">Table of n, a(n) for n = 1..45</a> (terms < 10^12)

%e 3287998643 is a term since it is equal to 743*787*5623 and 3287998643-1/2 divided by 743-1/2, 787-1/2 and 5623-1/2 gives 3 integers, namely 4428281, 4180545 and 584793.

%p with(numtheory); ListA226448:=proc(i, j) local c, d, n, ok, p;

%p for n from 2 to i do if not isprime(n) then p:=ifactors(n)[2]; ok:=1;

%p for d from 1 to nops(p) do if p[d][2]>1 or not type((n-j)/(p[d][1]-j), integer) then ok:=0; break; fi; od;

%p if ok=1 then print(n); fi; fi; od; end: ListA226448(10^9, 1/2); # _Paolo P. Lava_, Oct 06 2013

%o (PARI) is(n, P)=n=2*n-1; for(i=1, #P, if(n%(2*P[i]-1), return(0))); 1

%o list(lim, P=[], n=1, mx=lim\2)=my(v=[], t); if(#P>1&&is(n, P), v=[n]); P=concat(P, 0); forprime(p=2, min(lim, mx), P[#P]=p; t=list(lim\p, P, n*p, p-1); if(#t, v=concat(v, t))); v \\ _Charles R Greathouse IV_, Jun 07 2013

%Y Cf. A208728, A225702-A225720, A226020, A226111-A226114, A226364.

%K nonn

%O 1,1

%A _Paolo P. Lava_ and _Giovanni Resta_, Jun 07 2013

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 12 12:50 EDT 2021. Contains 344947 sequences. (Running on oeis4.)