login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A226447
Expansion of (1-x+x^3)/(1-x^2+2*x^3-x^4).
1
1, -1, 1, -2, 4, -5, 9, -15, 23, -38, 62, -99, 161, -261, 421, -682, 1104, -1785, 2889, -4675, 7563, -12238, 19802, -32039, 51841, -83881, 135721, -219602, 355324, -574925, 930249, -1505175, 2435423, -3940598, 6376022, -10316619, 16692641, -27009261, 43701901, -70711162, 114413064, -185124225
OFFSET
0,4
COMMENTS
a(n) and its differences:
. 1, -1, 1, -2, 4, -5, 9, -15, 23, -38, ...
. -2, 2, -3, 6, -9, 14, -24, 38, -61, 100, ...
. 4, -5, 9, -15, 23, -38, 62, -99, 161, -261, ...
. -9, 14, -24, 38, -61, 100, -161, 260, -422, 682, ...
. 23, -38, 62, -99, 161, -261, 421, -682, 1104, -1785, ...
. -61, 100, -161, 260, -422, 682, -1103, 1786, -2889, 4674, ...
. 161, -261, 421, -682, 1104, -1785, 2889, -4675, 7563, -12238, ...
The third row is the first shifted .
The main diagonal is A001077(n). The fourth is -A001077(n+1). By "shifted" antidiagonals there are one 1, two 2's (-2 of the first row and 2), generally A001651(n) (-1)^n *A001077(n).
a(n+1)/a(n) tends to A001622 (the golden ratio) as n -> infinity.
FORMULA
a(0)=1, a(1)=-1; for n>1, a(n) = a(n-2) - a(n-1) + A010892(n+2).
a(n) = a(n-2) -2*a(n-3) +a(n-4).
a(n) = A226956(-n).
a(n+1) = A039834(n) - (-1)^n*A094686(n).
a(n+6) - a(n) = 2*(-1)^n* A000032(n+3).
a(2n+1) = -A226956(2n+1).
G.f. ( -1+x-x^3 ) / ( (x^2-x-1)*(1-x+x^2) ). - R. J. Mathar, Jun 29 2013
2*a(n) = A010892(n+2)+A061084(n+1). - R. J. Mathar, Jun 29 2013
MATHEMATICA
a[0] = 1; a[1] = -1; a[n_] := a[n] = a[n-2] - a[n-1] - {-1, 0, 1, 1, 0, -1}[[Mod[n+1, 6] + 1]]; Table[a[n], {n, 0, 41}] (* Jean-François Alcover, Jul 04 2013 *)
PROG
(Magma) m:=50; R<x>:=PowerSeriesRing(Integers(), m); Coefficients(R!((1-x+x^3)/(1-x^2+2*x^3-x^4))); // Bruno Berselli, Jul 04 2013
CROSSREFS
Sequence in context: A349738 A336866 A255213 * A073151 A279786 A255515
KEYWORD
sign,easy
AUTHOR
Paul Curtz, Jun 28 2013
STATUS
approved