login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A226450
a(n) = n*(3*n^2 - 5*n + 3).
3
0, 1, 10, 45, 124, 265, 486, 805, 1240, 1809, 2530, 3421, 4500, 5785, 7294, 9045, 11056, 13345, 15930, 18829, 22060, 25641, 29590, 33925, 38664, 43825, 49426, 55485, 62020, 69049, 76590, 84661, 93280, 102465, 112234, 122605, 133596, 145225, 157510, 170469
OFFSET
0,3
COMMENTS
See the comment in A226449.
For n >= 3, also the detour index of the n-barbell graph. - Eric W. Weisstein, Dec 20 2017
LINKS
Eric Weisstein's World of Mathematics, Barbell Graph
Eric Weisstein's World of Mathematics, Detour Index
FORMULA
G.f.: x*(1+6*x+11*x^2)/(1-x)^4.
a(n) = A000567(n) + n*A000567(n-1).
MATHEMATICA
Table[n (3 n^2 - 5 n + 3), {n, 0, 40}]
CoefficientList[Series[x (1 + 6 x + 11 x^2)/(1 - x)^4, {x, 0, 40}], x] (* Vincenzo Librandi, Aug 18 2013 *)
LinearRecurrence[{4, -6, 4, -1}, {1, 10, 45, 124}, {0, 20}] (* Eric W. Weisstein, Dec 20 2017 *)
PROG
(Magma) [n*(3*n^2-5*n+3): n in [0..40]];
(Magma) I:=[0, 1, 10, 45]; [n le 4 select I[n] else 4*Self(n-1)-6*Self(n-2)+4*Self(n-3)-Self(n-4): n in [1..45]]; // Vincenzo Librandi, Aug 18 2013
(PARI) a(n) = n*(3*n^2 - 5*n + 3); \\ Altug Alkan, Dec 20 2017
CROSSREFS
Cf. A000567.
Similar sequences of the type b(m)+m*b(m-1), where b is a polygonal number: A006003, A069778, A143690, A204674, A212133, A226449, A226451.
Sequence in context: A229395 A306965 A045852 * A105938 A342254 A226254
KEYWORD
nonn,easy
AUTHOR
Bruno Berselli, Jun 07 2013
STATUS
approved