login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A306965
If the decimal expansion of n is d_1 ... d_k, a(n) = Sum binomial(10,d_i).
1
1, 10, 45, 120, 210, 252, 210, 120, 45, 10, 11, 20, 55, 130, 220, 262, 220, 130, 55, 20, 46, 55, 90, 165, 255, 297, 255, 165, 90, 55, 121, 130, 165, 240, 330, 372, 330, 240, 165, 130, 211, 220, 255, 330, 420, 462, 420, 330, 255, 220, 253, 262, 297, 372, 462
OFFSET
0,2
COMMENTS
Kiss found all the finite cycles under iteration of this map. There is one fixed point, 505, and one cycle of length 2, (463, 540), and that's all.
REFERENCES
P. Kiss, A generalization of a problem in number theory, Math. Sem. Notes Kobe Univ., 5 (1977), no. 3, 313-317. MR 0472667 (57 #12362).
LINKS
P. Kiss, A generalization of a problem in number theory, [Hungarian], Mat. Lapok, 25 (No. 1-2, 1974), 145-149.
H. J. J. te Riele, Iteration of number-theoretic functions, Nieuw Archief v. Wiskunde, (4) 1 (1983), 345-360. See Example I.1.c.
MATHEMATICA
a[n_] := Total[Binomial[10, #] & /@ IntegerDigits[n]]; Array[a, 55, 0] (* Amiram Eldar, Mar 07 2023 *)
PROG
(PARI) a(n) = my(d=digits(n)); sum(k=1, #d, binomial(10, d[k])); \\ Michel Marcus, Mar 07 2023
CROSSREFS
Cf. A306958.
Sequence in context: A009540 A010926 A229395 * A045852 A226450 A105938
KEYWORD
nonn,base
AUTHOR
N. J. A. Sloane, Mar 18 2019
STATUS
approved