

A306965


If the decimal expansion of n is d_1 ... d_k, a(n) = Sum binomial(10,d_i).


0



1, 10, 45, 120, 210, 252, 210, 120, 45, 10, 11, 20, 55, 130, 220, 262, 220, 130, 55, 20, 46, 55, 90, 165, 255, 297, 255, 165, 90, 55, 121, 130, 165, 240, 330, 372, 330, 240, 165, 130, 211, 220, 255, 330, 420, 462, 420, 330, 255, 220, 253, 262, 297, 372, 462
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,2


COMMENTS

Kiss found all the finite cycles under iteration of this map. There is one fixed point, 505, and one cycle of length 2, (463, 540), and that's all.


REFERENCES

P. Kiss, A generalization of a problem in number theory, Math. Sem. Notes Kobe Univ., 5 (1977), no. 3, 313317. MR 0472667 (57 #12362).


LINKS

Table of n, a(n) for n=0..54.
Amiram Eldar, Table of n, a(n) for n = 0..10000
P. Kiss, A generalization of a problem in number theory, [Hungarian], Mat. Lapok, 25 (No. 12, 1974), 145149.
H. J. J. te Riele, Iteration of numbertheoretic functions, Nieuw Archief v. Wiskunde, (4) 1 (1983), 345360. See Example I.1.c.


EXAMPLE

The map f sends 12 to 100 to 12. This is the unique cycle of length 2.


CROSSREFS

Cf. A306958.
Sequence in context: A009540 A010926 A229395 * A045852 A226450 A105938
Adjacent sequences: A306962 A306963 A306964 * A306966 A306967 A306968


KEYWORD

nonn,base


AUTHOR

N. J. A. Sloane, Mar 18 2019


STATUS

approved



