

A306967


a(n) is the first Zagreb index of the Fibonacci cube Gamma(n).


2



2, 6, 22, 54, 132, 292, 626, 1290, 2594, 5102, 9864, 18792, 35362, 65838, 121454, 222246, 403788, 728972, 1308562, 2336946, 4154170, 7353310, 12965904, 22781520, 39897410, 69662166, 121292998, 210642966, 364928532, 630794356
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


COMMENTS

The Fibonacci cube Gamma(n) can be defined as the graph whose vertices are the binary strings of length n without two consecutive 1's and in which two vertices are adjacent when their Hamming distance is exactly 1.
The first Zagreb index of a simple connected graph is the sum of the squared degrees of its vertices. Alternatively, it is the sum of the degree sums d(i)+d(j) over all edges ij of the graph.
In the Maple program, T(n,k) gives the number of vertices of degree k in the Fibonacci cube Gamma(n) (see A245825).


LINKS

Table of n, a(n) for n=1..30.
S. Klavžar, Structure of Fibonacci cubes: a survey, J. Comb. Optim., 25, 2013, 505522.
S. Klavžar, M. Mollard and M. Petkovšek, The degree sequence of Fibonacci and Lucas cubes, Discrete Mathematics, Vol. 311, No. 14 (2011), 13101322.


FORMULA

a(n) = Sum_{k=1..n} T(n,k)*k^2, where T(n,k) = Sum_{i=0..k} binomial(n2*i, ki) * binomial(i+1, nki+1).
Conjectures from Colin Barker, Mar 28 2019: (Start)
G.f.: 2*x*(1 + 2*x^2  x^3) / (1  x  x^2)^3.
a(n) = 3*a(n1)  5*a(n3) + 3*a(n5) + a(n6) for n>6.
(End)


EXAMPLE

a(2) = 6 because the Fibonacci cube Gamma(2) is the pathtree P_3 having 2 vertices of degree 1 and 1 vertex of degree 2; consequently, the Zagreb index is 1^2 + 1^2 + 2^2 = 6 (or (1 + 2) + (2 + 1) = 6).


MAPLE

T:=(n, k) > sum(binomial(n  2*i, k  i) * binomial(i + 1, n  k  i + 1), i = 0..k): seq(add(T(n, k)*k^2, k=1..n), n=1..30);


CROSSREFS

Cf. A245825.
Sequence in context: A147800 A246624 A212872 * A324913 A027561 A321626
Adjacent sequences: A306964 A306965 A306966 * A306968 A306969 A306970


KEYWORD

nonn


AUTHOR

Emeric Deutsch, Mar 26 2019


STATUS

approved



