OFFSET
1,2
COMMENTS
First compute s(n) = c*sqrt(1 - 1/n^2), where c = 299792458 is the speed of light in vacuum (m/s). Then round up. Note that a(n) = c for n >= 12244, which implies that lim n -> infinity s(n) = c.
REFERENCES
Lawrence S. Lerner, Physics for Scientists and Engineers, vol. 2, Jones and Bartlett, 1996, p. 1088.
LINKS
Albert Einstein, Zur Elektrodynamik bewegter Körper, Annalen der Physik, vol. 322, Issue 10, pp. 891-921. [gallica]
Wikipedia, Albert Einstein
Wikipedia, Special relativity
FORMULA
a(n) = ceiling(A003678*sqrt(1 - 1/n^2)).
EXAMPLE
a(2) = 259627885 because 299792458*sqrt(1 - 1/4) = 259627884.4909793640....
MATHEMATICA
c = 299792458; Table[Ceiling[c*Sqrt[1 - 1/n^2]], {n, 24}]
PROG
(Magma) c:=299792458; [Ceiling(c*Sqrt(1-1/n^2)) : n in [1..24]];
(PARI) c=299792458; vector(24, n, ceil(c*sqrt(1-1/n^2)))
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Arkadiusz Wesolowski, Nov 05 2013
STATUS
approved