login
A231202
The smallest possible speed in m/s (rounded up) of an object whose relativistic mass is n times its rest mass.
1
0, 259627885, 282647041, 290272800, 293735421, 295599350, 296717583, 297441109, 297936141, 298289730, 298551077, 298749699, 298904183, 299026704, 299125511, 299206353, 299273337, 299329458, 299376946, 299417483, 299452365, 299482595, 299508967, 299532109
OFFSET
1,2
COMMENTS
First compute s(n) = c*sqrt(1 - 1/n^2), where c = 299792458 is the speed of light in vacuum (m/s). Then round up. Note that a(n) = c for n >= 12244, which implies that lim n -> infinity s(n) = c.
REFERENCES
Lawrence S. Lerner, Physics for Scientists and Engineers, vol. 2, Jones and Bartlett, 1996, p. 1088.
LINKS
Albert Einstein, Zur Elektrodynamik bewegter Körper, Annalen der Physik, vol. 322, Issue 10, pp. 891-921. [gallica]
Wikipedia, Albert Einstein
FORMULA
a(n) = ceiling(A003678*sqrt(1 - 1/n^2)).
EXAMPLE
a(2) = 259627885 because 299792458*sqrt(1 - 1/4) = 259627884.4909793640....
MATHEMATICA
c = 299792458; Table[Ceiling[c*Sqrt[1 - 1/n^2]], {n, 24}]
PROG
(Magma) c:=299792458; [Ceiling(c*Sqrt(1-1/n^2)) : n in [1..24]];
(PARI) c=299792458; vector(24, n, ceil(c*sqrt(1-1/n^2)))
CROSSREFS
Cf. A003678.
Sequence in context: A246224 A205934 A375975 * A226448 A250433 A329464
KEYWORD
nonn,easy
AUTHOR
STATUS
approved