|
|
A067518
|
|
Number of spanning trees in n X n X 2 grid.
|
|
3
|
|
|
|
OFFSET
|
1,2
|
|
LINKS
|
|
|
FORMULA
|
a(n) = 2^(2*n^2-2) / n^2 * Product_{n1=0..n-1, n2=0..n-1, n3=0..1, n1+n2+n3>0} (3 - cos(Pi*n1/n) - cos(Pi*n2/n) - cos(Pi*n3/2)).
a(n) ~ c * d^n * 2^(n^2) * exp(4*n^2*(G/Pi + m/Pi^2)) / sqrt(n), where m = Integral_{x=0..Pi/2, y=0..Pi/2} log(1 + 2*sin(x)^2 + 2*sin(y)^2) dy dx = A340422 = 2.5516988064039243609935616786056293143254369265492957275912213393835172..., d = 0.08133113706589390743806107..., c = 0.788729432659299631982768... and G is Catalan's constant A006752. Equivalently, m = Pi * Integral_{x=0..Pi/2} (log(1 + sqrt(1 + 2/(3 - 2*cos(x)^2))) + log((1 + 2*sin(x)^2)/4)/2) dx. - Vaclav Kotesovec, Jan 06 2021
|
|
MATHEMATICA
|
a[n_] := 2^(2*n^2 - 2)/n^2*Product[If[n1+n2+n3 > 0, 3 - Cos[Pi*n1/n] - Cos[Pi*n2/n] - Cos[Pi*n3/2], 1], {n1, 0, n-1}, {n2, 0, n-1}, {n3, 0, 1}];
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
Sharon Sela (sharonsela(AT)hotmail.com), Jun 08 2002
|
|
EXTENSIONS
|
More terms from André Pönitz (poenitz(AT)htwm.de), Jun 11 2003
|
|
STATUS
|
approved
|
|
|
|