login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A274446
a(n) is the smallest composite squarefree number k such that (p+n) | (k+1) for all primes dividing k.
3
399, 299, 55, 611, 143, 5549, 39, 155, 493, 615383, 713, 3247, 119, 1304489, 1333, 31415, 2599, 749, 2183, 440153, 155, 75499, 119, 168600949, 4223, 223649, 559, 66299, 6407, 15157, 3431, 85499, 799, 31589, 7313
OFFSET
1,1
EXAMPLE
Prime factors of 399 are 3, 7 and 19. (399 + 1) / (3 + 1) = 400 / 4 = 100, (399 + 1) / (7 + 1) = 400 / 8 = 50 and (399 + 1) / (19 + 1) = 400 / 20 = 20.
Prime factors of 299 are 13 and 23. (399 + 1) / (13 + 2) = 300 / 15 = 20 and (399 + 1) / (23 + 2) = 300 / 25 = 12.
MAPLE
with(numtheory); P:=proc(q) local d, k, n, ok, p;
for k from 1 to q do for n from 2 to q do
if not isprime(n) and issqrfree(n) then p:=ifactors(n)[2]; ok:=1;
for d from 1 to nops(p) do
if not type((n+1)/(p[d][1]+k), integer) then ok:=0; break; fi; od;
if ok=1 then print(n); break; fi; fi; od; od; end: P(10^9);
MATHEMATICA
t = Select[Range[2000000], SquareFreeQ@ # && CompositeQ@ # &]; Table[SelectFirst[t, Function[k, AllTrue[First /@ FactorInteger@ k, Divisible[k + 1, # + n] &]]], {n, 23}] (* Michael De Vlieger, Jun 24 2016, Version 10 *)
PROG
(PARI) isok(k, n) = {if (! issquarefree(k), return (0)); vp = factor(k) [, 1]; if (#vp == 1, return (0)); for (i=1, #vp, if ((k+1) % (n+vp[i]), return (0)); ); 1; }
a(n) = {my(k=2); while (! isok(k, n), k++); k; } \\ Michel Marcus, Jun 28 2016
KEYWORD
nonn,easy
AUTHOR
Paolo P. Lava, Jun 23 2016
EXTENSIONS
a(24) from Giovanni Resta, Jun 23 2016
STATUS
approved