OFFSET
1,1
COMMENTS
Inspired by Project Euler, Problem 143 (see link) where such a triangle is called a Torricelli triangle.
Differs from A336328 where FA + FB + FC is an integer, but FA, FB and FC are fractions. Jinyuan Wang has found that the 37th and 58th triples are the first triples for which the common denominator of these fractions is 1 (A351477).
Each triple (a, b, c) is in increasing order, and the triples are displayed in the same increasing order of the corresponding triples in A336328 (see formulas).
+-------+-------+-------+---------+--------+-------+-------+--------+--------+
| a | b | c |gcd(a,b,c)| FA | FB | FC | d | a+b+c |
+-------+-------+-------+----------+-------+-------+-------+--------+--------+
| 399 | 455 | 511 | 7 | 325 | 264 | 195 | 784 | 1365 |
| 511 | 616 | 665 | 7 | 440 | 325 | 264 | 1029 | 1792 |
| 1591 | 5439 | 5624 | 37 | 5016 | 1064 | 765 | 6845 | 12654 |
| 35941 | 47544 | 58015 | 283 | 39360 | 27265 | 13464 | 80089 | 141500 |
| 8827 | 16835 | 18928 | 91 | 14800 | 6528 | 3515 | 24843 | 44590 |
| 36741 | 73151 | 92680 | 331 | 70720 | 34200 | 4641 | 109561 | 202572 |
| 16219 | 94335 | 97976 | 331 | 91200 | 12376 | 5985 | 109561 | 208530 |
| 1235 | 4056 | 4459 | 13 | 3864 | 1015 | 360 | 5239 | 9750 |
| 12728 | 13545 | 15523 | 43 | 9405 | 8512 | 6120 | 24037 | 41796 |
| 14744 | 33271 | 37539 | 97 | 30429 | 11520 | 5096 | 47045 | 87554 |
..............................................................................
LINKS
FORMULA
EXAMPLE
The array begins:
399, 455, 511;
511, 616, 665;
1591, 5439, 5624;
35941, 47544, 58015;
8827, 16835, 18928;
36741, 73151, 92680;
.....................
For 1st triple (399, 455, 511) with gcd(399, 455, 511) = 7, we get FA = 325, FB = 264 and FC = 195. This smallest triangle such that a, b, c, FA, FB, FC are all integers is the example proposed in Project Euler's link.
CROSSREFS
KEYWORD
nonn,tabf
AUTHOR
Bernard Schott, Mar 17 2022
STATUS
approved