login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A352360
Three-column array giving list of primitive triples for integer-sided triangles with A < B < C < 2*Pi/3 and such that FA, FB, FC are also integers where F is the Fermat point of the triangle.
0
399, 455, 511, 511, 616, 665, 1591, 5439, 5624, 35941, 47544, 58015, 8827, 16835, 18928, 36741, 73151, 92680, 16219, 94335, 97976, 1235, 4056, 4459, 12728, 13545, 15523, 14744, 33271, 37539, 13889, 16856, 17501, 1911, 4901, 5681, 196935, 320624, 324079, 9435, 12691, 17501, 22477, 37128, 44135
OFFSET
1,1
COMMENTS
Inspired by Project Euler, Problem 143 (see link) where such a triangle is called a Torricelli triangle.
Differs from A336328 where FA + FB + FC is an integer, but FA, FB and FC are fractions. Jinyuan Wang has found that the 37th and 58th triples are the first triples for which the common denominator of these fractions is 1 (A351477).
Each triple (a, b, c) is in increasing order, and the triples are displayed in the same increasing order of the corresponding triples in A336328 (see formulas).
+-------+-------+-------+---------+--------+-------+-------+--------+--------+
| a | b | c |gcd(a,b,c)| FA | FB | FC | d | a+b+c |
+-------+-------+-------+----------+-------+-------+-------+--------+--------+
| 399 | 455 | 511 | 7 | 325 | 264 | 195 | 784 | 1365 |
| 511 | 616 | 665 | 7 | 440 | 325 | 264 | 1029 | 1792 |
| 1591 | 5439 | 5624 | 37 | 5016 | 1064 | 765 | 6845 | 12654 |
| 35941 | 47544 | 58015 | 283 | 39360 | 27265 | 13464 | 80089 | 141500 |
| 8827 | 16835 | 18928 | 91 | 14800 | 6528 | 3515 | 24843 | 44590 |
| 36741 | 73151 | 92680 | 331 | 70720 | 34200 | 4641 | 109561 | 202572 |
| 16219 | 94335 | 97976 | 331 | 91200 | 12376 | 5985 | 109561 | 208530 |
| 1235 | 4056 | 4459 | 13 | 3864 | 1015 | 360 | 5239 | 9750 |
| 12728 | 13545 | 15523 | 43 | 9405 | 8512 | 6120 | 24037 | 41796 |
| 14744 | 33271 | 37539 | 97 | 30429 | 11520 | 5096 | 47045 | 87554 |
..............................................................................
The sequences with terms of this table are listed in Crossrefs section; here, d = FA + FB + FC. The perimeter corresponding to n-th triple a+b+c = A336333(n) * A351477(n).
FORMULA
a(3n-2) = A336328(3n-2) * A351477(n), a(3n-1) = A336328(3n-1) * A351477(n), a(3n) = A336328(3n) * A351477(n), for n >= 1.
EXAMPLE
The array begins:
399, 455, 511;
511, 616, 665;
1591, 5439, 5624;
35941, 47544, 58015;
8827, 16835, 18928;
36741, 73151, 92680;
.....................
For 1st triple (399, 455, 511) with gcd(399, 455, 511) = 7, we get FA = 325, FB = 264 and FC = 195. This smallest triangle such that a, b, c, FA, FB, FC are all integers is the example proposed in Project Euler's link.
CROSSREFS
Cf. A336328.
Cf. A351477 (gcd(a,b,c)), A351801 (FA), A351802 (FB), A351803 (FC), A351476 (FA+FB+FC).
Sequence in context: A274446 A253598 A046013 * A176911 A202158 A126231
KEYWORD
nonn,tabf
AUTHOR
Bernard Schott, Mar 17 2022
STATUS
approved