|
|
A176911
|
|
Numbers that are the product of 3 distinct primes a,b and c, such that a+b+c, a^2+b^2+c^2 and a^3+b^3+c^3 are prime numbers.
|
|
0
|
|
|
399, 561, 651, 957, 1173, 2919, 3009, 3441, 3567, 3657, 3783, 4233, 4539, 7347, 8445, 9093, 9741, 12747, 13827, 14745, 14817, 17913, 18471, 19767, 21351, 23727, 25761, 25995, 26553, 26697, 28407, 34113, 34743, 35697, 36543, 36579, 38145, 40161
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
COMMENTS
|
399=3*7*19; 3+7+19=29; 3^2+7^2+19^2=419; 3^3+7^3+19^3=7229,..
|
|
LINKS
|
|
|
MATHEMATICA
|
lst={}; Do[If[l[n]=={1, 1, 1}, a=f[n][[1]]; b=f[n][[2]]; c=f[n][[3]]; If[PrimeQ[a+b+c]&&PrimeQ[a^2+b^2+c^2]&&PrimeQ[a^3+b^3+c^3], AppendTo[lst, n]]], {n, 9!}]; lst
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|