login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A176878
Numbers that are the product of 3 distinct primes a, b and c, such that a^2 + b^2 + c^2 is prime.
2
105, 231, 273, 345, 357, 399, 483, 561, 627, 651, 663, 705, 759, 777, 795, 903, 957, 969, 987, 1005, 1023, 1131, 1173, 1221, 1239, 1281, 1353, 1407, 1419, 1491, 1533, 1551, 1581, 1605, 1659, 1677, 1743, 1749, 1887, 2013, 2037, 2055, 2091, 2121, 2139
OFFSET
1,1
EXAMPLE
105 = 3*5*7; 3^2 + 5^2 + 7^2 = 83.
MATHEMATICA
l[n_]:=Last/@FactorInteger[n]; f[n_]:=First/@FactorInteger[n]; lst={}; Do[If[l[n]=={1, 1, 1}, a=f[n][[1]]; b=f[n][[2]]; c=f[n][[3]]; If[PrimeQ[a^2+b^2+c^2], AppendTo[lst, n]]], {n, 7!}]; lst
Take[Union[Times@@@Select[Subsets[Prime[Range[50]], {3}], PrimeQ[Total[#^2]]&]], 50] (* Harvey P. Dale, Mar 11 2011 *)
PROG
(PARI) lst(lim)=my(v=List()); forprime(a=3, lim^(1/3), forprime(b=a+2, sqrt(lim\a), forprime(c=b+2, lim\(a*b), if(isprime(a^2+b^2+c^2), listput(v, a*b*c))))); vecsort(Vec(v), , 8) \\ Charles R Greathouse IV, Mar 11 2011
CROSSREFS
KEYWORD
nonn
AUTHOR
STATUS
approved