login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A176881
a(n)=p-q for n-th product of 2 distinct primes p and q (q<p).
4
1, 3, 5, 2, 4, 9, 11, 8, 15, 2, 17, 10, 21, 14, 6, 16, 27, 29, 8, 20, 35, 4, 39, 12, 41, 26, 6, 28, 45, 14, 51, 34, 18, 57, 10, 59, 38, 40, 12, 65, 44, 69, 2, 24, 71, 26, 77, 50, 16, 81, 56, 87, 58, 32, 6, 95, 64, 99, 22, 36, 101, 8, 68, 105, 38, 24, 107, 70, 4, 111, 42, 76, 6, 80
OFFSET
1,2
COMMENTS
Where products of two distinct primes are in A006881.
If Polignac's conjecture is true, then every even positive integer occurs infinitely many times in this sequence. - Clark Kimberling, Apr 25 2016
LINKS
EXAMPLE
a(1)=1 because 1=3-2 for A006881(1)=6=3*2; a(2)=3 because 3=5-2 for A006881(2)=10=5*2.
MAPLE
A006881 := proc(n) if n = 1 then 6; else for a from procname(n-1)+1 do if numtheory[bigomega](a) = 2 and nops(numtheory[factorset](a)) =2 then return a; end if; end do: end if; end proc:
A020639 := proc(n) numtheory[factorset](n) ; min(op(%)) ; end proc:
A006530 := proc(n) numtheory[factorset](n) ; max(op(%)) ; end proc:
for n from 1 to 130 do c := A006881(n) ; printf("%d, ", A006530(c)-A020639(c)) ; end do:
# R. J. Mathar, May 01 2010
MATHEMATICA
mx = 350; t = Sort@Flatten@Table[Prime[n]*Prime[m], {n, Log[2, mx/3]}, {m, n + 1, PrimePi[mx/Prime[n]]}]; (* A006881, _Robert G.Wilson v_, Feb 07 2012 *)
u = Table[FactorInteger[t[[k]]][[1]], {k, 1, Length[t]}];
u1 = Table[u[[k]][[1]], {k, 1, Length[t]}] (* A096916 *)
PrimePi[u1] (* A270650 *)
v = Table[FactorInteger[t[[k]]][[2]], {k, 1, Length[t]}];
v1 = Table[v[[k]][[1]], {k, 1, Length[t]}] (* A070647 *)
PrimePi[v1] (* A270652 *)
d = v1 - u1 (* A176881 *) (* Clark Kimberling, Apr 25 2016 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
EXTENSIONS
Entries checked by R. J. Mathar, May 01 2010
STATUS
approved