login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A109313
Difference between prime factors of n-th semiprime.
5
0, 1, 0, 3, 5, 2, 4, 9, 0, 11, 8, 15, 2, 17, 10, 21, 0, 14, 6, 16, 27, 29, 8, 20, 35, 4, 39, 12, 41, 26, 6, 28, 45, 14, 51, 34, 18, 57, 10, 0, 59, 38, 40, 12, 65, 44, 69, 2, 24, 71, 26, 77, 50, 16, 81, 0, 56, 87, 58, 32, 6, 95, 64, 99, 22, 36, 101, 8, 68, 105, 38, 24, 107, 70, 4
OFFSET
1,4
COMMENTS
a(n)=0 iff sp(n) is a square of prime, sp(n) = n-th semiprime = A001358(n).
LINKS
Alois P. Heinz, Table of n, a(n) for n = 1..20000 (first 1000 terms from Zak Seidov)
EXAMPLE
a(1)=0 because sp(1)=4=2*2 and 2-2=0; a(2)=1 because sp(2)=6=2*3 and 3-2=1; sp(n)=n-th semiprime.
MAPLE
with(numtheory): a:=proc(n) if bigomega(n)=2 and nops(factorset(n))=2 then factorset(n)[2]-factorset(n)[1] elif bigomega(n)=2 then 0 else fi end: seq(a(n), n=1..225); # Emeric Deutsch
# second Maple program:
b:= proc(n) option remember; local k;
if n=1 then 4
else for k from 1+b(n-1) do if not isprime(k) and
numtheory[bigomega](k)=2 then return k fi
od
fi
end:
a:= n-> (s-> max(s)-min(s))(numtheory[factorset](b(n))):
seq(a(n), n=1..100); # Alois P. Heinz, Feb 05 2017
MATHEMATICA
spQ[n_] := PrimeOmega[n] == 2; fi[n_] := FactorInteger[n];
f[n_] := fi[n][[-1, 1]] - fi[n][[1, 1]];
f[#] & /@ Select[Range@215, spQ] (* Zak Seidov, Oct 16 2014 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Zak Seidov, Jun 27 2005
EXTENSIONS
Edited by Zak Seidov, Oct 16 2014
STATUS
approved