Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #27 Feb 06 2017 20:16:11
%S 0,1,0,3,5,2,4,9,0,11,8,15,2,17,10,21,0,14,6,16,27,29,8,20,35,4,39,12,
%T 41,26,6,28,45,14,51,34,18,57,10,0,59,38,40,12,65,44,69,2,24,71,26,77,
%U 50,16,81,0,56,87,58,32,6,95,64,99,22,36,101,8,68,105,38,24,107,70,4
%N Difference between prime factors of n-th semiprime.
%C a(n)=0 iff sp(n) is a square of prime, sp(n) = n-th semiprime = A001358(n).
%H Alois P. Heinz, <a href="/A109313/b109313.txt">Table of n, a(n) for n = 1..20000</a> (first 1000 terms from Zak Seidov)
%e a(1)=0 because sp(1)=4=2*2 and 2-2=0; a(2)=1 because sp(2)=6=2*3 and 3-2=1; sp(n)=n-th semiprime.
%p with(numtheory): a:=proc(n) if bigomega(n)=2 and nops(factorset(n))=2 then factorset(n)[2]-factorset(n)[1] elif bigomega(n)=2 then 0 else fi end: seq(a(n),n=1..225); # _Emeric Deutsch_
%p # second Maple program:
%p b:= proc(n) option remember; local k;
%p if n=1 then 4
%p else for k from 1+b(n-1) do if not isprime(k) and
%p numtheory[bigomega](k)=2 then return k fi
%p od
%p fi
%p end:
%p a:= n-> (s-> max(s)-min(s))(numtheory[factorset](b(n))):
%p seq(a(n), n=1..100); # _Alois P. Heinz_, Feb 05 2017
%t spQ[n_] := PrimeOmega[n] == 2; fi[n_] := FactorInteger[n];
%t f[n_] := fi[n][[-1, 1]] - fi[n][[1, 1]];
%t f[#] & /@ Select[Range@215, spQ] (* _Zak Seidov_, Oct 16 2014 *)
%Y Cf. A001358, A068318, A178313.
%K nonn
%O 1,4
%A _Zak Seidov_, Jun 27 2005
%E Edited by _Zak Seidov_, Oct 16 2014