Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #16 Mar 05 2024 07:03:07
%S 1,3,5,2,4,9,11,8,15,2,17,10,21,14,6,16,27,29,8,20,35,4,39,12,41,26,6,
%T 28,45,14,51,34,18,57,10,59,38,40,12,65,44,69,2,24,71,26,77,50,16,81,
%U 56,87,58,32,6,95,64,99,22,36,101,8,68,105,38,24,107,70,4,111,42,76,6,80
%N a(n)=p-q for n-th product of 2 distinct primes p and q (q<p).
%C Where products of two distinct primes are in A006881.
%C If Polignac's conjecture is true, then every even positive integer occurs infinitely many times in this sequence. - _Clark Kimberling_, Apr 25 2016
%H Clark Kimberling, <a href="/A176881/b176881.txt">Table of n, a(n) for n = 1..1000</a>
%e a(1)=1 because 1=3-2 for A006881(1)=6=3*2; a(2)=3 because 3=5-2 for A006881(2)=10=5*2.
%p A006881 := proc(n) if n = 1 then 6; else for a from procname(n-1)+1 do if numtheory[bigomega](a) = 2 and nops(numtheory[factorset](a)) =2 then return a; end if; end do: end if; end proc:
%p A020639 := proc(n) numtheory[factorset](n) ; min(op(%)) ; end proc:
%p A006530 := proc(n) numtheory[factorset](n) ; max(op(%)) ; end proc:
%p for n from 1 to 130 do c := A006881(n) ; printf("%d,",A006530(c)-A020639(c)) ; end do:
%p # _R. J. Mathar_, May 01 2010
%t mx = 350; t = Sort@Flatten@Table[Prime[n]*Prime[m], {n, Log[2, mx/3]}, {m, n + 1, PrimePi[mx/Prime[n]]}]; (* A006881, _Robert G.Wilson v_, Feb 07 2012 *)
%t u = Table[FactorInteger[t[[k]]][[1]], {k, 1, Length[t]}];
%t u1 = Table[u[[k]][[1]], {k, 1, Length[t]}] (* A096916 *)
%t PrimePi[u1] (* A270650 *)
%t v = Table[FactorInteger[t[[k]]][[2]], {k, 1, Length[t]}];
%t v1 = Table[v[[k]][[1]], {k, 1, Length[t]}] (* A070647 *)
%t PrimePi[v1] (* A270652 *)
%t d = v1 - u1 (* A176881 *) (* _Clark Kimberling_, Apr 25 2016 *)
%Y Cf. A006881, A096916, A070647.
%K nonn
%O 1,2
%A _Juri-Stepan Gerasimov_, Apr 27 2010
%E Entries checked by _R. J. Mathar_, May 01 2010