OFFSET
0,2
COMMENTS
This can also be defined as the expansion of 1/(x^4*p(1/x)) with p(x) = 2 - 2*x + x^2 - 3*x^3 + x^4.
Limit_{n->oo} a(n+1)/a(n) approaches the Pisot root 2.8071578467023431323785220673259635911...
LINKS
Index entries for linear recurrences with constant coefficients, signature (3,-1,2,-2).
FORMULA
G.f.: 1/(1 - 3*x + x^2 - 2*x^3 + 2*x^4).
a(n) = +3*a(n-1) -a(n-2) +2*a(n-3) -2*a(n-4).
MATHEMATICA
LinearRecurrence[{3, -1, 2, -2}, {1, 3, 8, 23}, 40] (* Bruno Berselli, May 17 2017 *)
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Roger L. Bagula, Apr 27 2010
STATUS
approved