login
A176880
Expansion of 1/(1 - 3*x + x^2 - 2*x^3 + 2*x^4).
0
1, 3, 8, 23, 65, 182, 511, 1435, 4028, 11307, 31741, 89102, 250123, 702135, 1971004, 5532919, 15531777, 43600150, 122392503, 343575075, 964469468, 2707418035, 7600149781, 21334820094, 59890207635, 168121266303, 471942931900, 1324818304479, 3718974098873
OFFSET
0,2
COMMENTS
This can also be defined as the expansion of 1/(x^4*p(1/x))) with p = 2-2*x + x^2 - 3*x^3 + x^4.
Limit n -> infinity a(n+1)/a(n) approaches the Pisot root 2.8071578467023431323785220673259635911...
FORMULA
G.f.: 1/(1 - 3*x + x^2 - 2*x^3 + 2*x^4).
a(n) = +3*a(n-1) -a(n-2) +2*a(n-3) -2*a(n-4).
MATHEMATICA
LinearRecurrence[{3, -1, 2, -2}, {1, 3, 8, 23}, 40] (* Bruno Berselli, May 17 2017 *)
CROSSREFS
Sequence in context: A017930 A305561 A014398 * A078054 A018043 A291037
KEYWORD
nonn,easy
AUTHOR
Roger L. Bagula, Apr 27 2010
STATUS
approved