login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A176880
Expansion of 1/(1 - 3*x + x^2 - 2*x^3 + 2*x^4).
0
1, 3, 8, 23, 65, 182, 511, 1435, 4028, 11307, 31741, 89102, 250123, 702135, 1971004, 5532919, 15531777, 43600150, 122392503, 343575075, 964469468, 2707418035, 7600149781, 21334820094, 59890207635, 168121266303, 471942931900, 1324818304479, 3718974098873
OFFSET
0,2
COMMENTS
This can also be defined as the expansion of 1/(x^4*p(1/x)) with p(x) = 2 - 2*x + x^2 - 3*x^3 + x^4.
Limit_{n->oo} a(n+1)/a(n) approaches the Pisot root 2.8071578467023431323785220673259635911...
FORMULA
G.f.: 1/(1 - 3*x + x^2 - 2*x^3 + 2*x^4).
a(n) = +3*a(n-1) -a(n-2) +2*a(n-3) -2*a(n-4).
MATHEMATICA
LinearRecurrence[{3, -1, 2, -2}, {1, 3, 8, 23}, 40] (* Bruno Berselli, May 17 2017 *)
CROSSREFS
Sequence in context: A305561 A379530 A014398 * A078054 A018043 A291037
KEYWORD
nonn,easy
AUTHOR
Roger L. Bagula, Apr 27 2010
STATUS
approved