Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #10 Mar 02 2015 02:19:00
%S 105,231,273,345,357,399,483,561,627,651,663,705,759,777,795,903,957,
%T 969,987,1005,1023,1131,1173,1221,1239,1281,1353,1407,1419,1491,1533,
%U 1551,1581,1605,1659,1677,1743,1749,1887,2013,2037,2055,2091,2121,2139
%N Numbers that are the product of 3 distinct primes a, b and c, such that a^2 + b^2 + c^2 is prime.
%e 105 = 3*5*7; 3^2 + 5^2 + 7^2 = 83.
%t l[n_]:=Last/@FactorInteger[n]; f[n_]:=First/@FactorInteger[n]; lst={};Do[If[l[n]=={1,1,1},a=f[n][[1]];b=f[n][[2]];c=f[n][[3]];If[PrimeQ[a^2+b^2+c^2],AppendTo[lst,n]]],{n,7!}];lst
%t Take[Union[Times@@@Select[Subsets[Prime[Range[50]],{3}],PrimeQ[Total[#^2]]&]],50] (* _Harvey P. Dale_, Mar 11 2011 *)
%o (PARI) lst(lim)=my(v=List());forprime(a=3,lim^(1/3),forprime(b=a+2,sqrt(lim\a),forprime(c=b+2,lim\(a*b),if(isprime(a^2+b^2+c^2),listput(v,a*b*c)))));vecsort(Vec(v),,8) \\ _Charles R Greathouse IV_, Mar 11 2011
%Y Cf. A006881, A014574, A176875, A176876, A176877.
%K nonn
%O 1,1
%A _Vladimir Joseph Stephan Orlovsky_, Apr 27 2010