login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A228307
The hyper-Wiener index of the Kneser graph K(n,2) (n>=5).
1
105, 225, 420, 714, 1134, 1710, 2475, 3465, 4719, 6279, 8190, 10500, 13260, 16524, 20349, 24795, 29925, 35805, 42504, 50094, 58650, 68250, 78975, 90909, 104139, 118755, 134850, 152520, 171864, 192984, 215985, 240975, 268065, 297369, 329004, 363090
OFFSET
5,1
COMMENTS
The Kneser graph K(n,2) is the graph whose vertices represent the 2-subsets of {1,2,...,n} and two vertices are connected if and only if they correspond to disjoint subsets.
K(n,2) is disconnected for n<=4.
K(5,2) is the Petersen graph.
The Kneser graph K(n,2) is distance-regular with intersection array [(n-2)*(n-3)/2, 2*(n-4); 1, (n-3)*(n-4)/2].
REFERENCES
R. Balakkrishnan, S. Francis Raj, The Wiener number of Kneser graphs, Discussiones Math, Graph Theory, 28, 2008, 219-228.
LINKS
Eric Weisstein's World of Mathematics, Kneser Graph.
FORMULA
a(n) = (1/8)*n*(n-1)*(n-2)*(n+9).
G.f.: 3*x^5*(35-100*x+115*x^2-62*x^3+13*x^4)/(1-x)^5.
The Hosoya-Wiener polynomial of K(n,2) is (1/8)*n*(n-1)*(n-2)*t*(n-3+4*t).
a(n) = 3*A095661(n-3). - R. J. Mathar, Aug 21 2013
MAPLE
a := proc (n) options operator, arrow: (1/8)*n*(n-1)*(n-2)*(n+9) end proc: seq(a(n), n = 5 .. 40);
CROSSREFS
Sequence in context: A069692 A212665 A242063 * A179143 A176878 A088595
KEYWORD
nonn,easy
AUTHOR
Emeric Deutsch, Aug 20 2013
STATUS
approved