OFFSET
2,1
COMMENTS
The hypercube graph Q(n) has as vertices the binary words of length n and an edge joins two vertices whenever the corresponding binary words differ in just one place.
Q(n) is distance-transitive and therefore also distance-regular. The intersection array is {n,n-1,n-2,...,1; 1,2,3,...,n-1,n}.
REFERENCES
Norman Biggs, Algebraic Graph Theory, 2nd ed. Cambridge University Press, 1993 (p. 161).
LINKS
R. Balakrishnan, N. Sridharan and K. Viswanathan Iyer,, The Wiener index of odd graphs, J. Ind. Inst. Sci., vol. 86, no. 5, 2006. [Cached copy]
Eric Weisstein's World of Mathematics, Hypercube Graph.
Index entries for linear recurrences with constant coefficients, signature (12,-48,64)
FORMULA
a(n) = 4^{n-2}*n*(3+n).
G.f.: 2*x^2*(5 - 24*x + 32*x^2)/(1-4*x)^3.
The Hosoya-Wiener polynomial of Q(n) is 2^{n-1}*((1+t)^n - 1).
MAPLE
a := proc (n) options operator, arrow: 4^(n-2)*n*(3+n) end proc: seq(a(n), n = 2 .. 25);
MATHEMATICA
LinearRecurrence[{12, -48, 64}, {10, 72, 448}, 30] (* Harvey P. Dale, Dec 13 2024 *)
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Emeric Deutsch, Aug 20 2013
STATUS
approved