login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A228316
The hyper-Wiener index of the Cartesian product of the cycles C(n) and C(n) (a Torus Grid Graph).
2
0, 10, 72, 448, 1450, 4482, 10388, 23552, 45360, 86250, 147620, 250560, 395122, 619458, 919800, 1359872, 1928208, 2725002, 3725520, 5080000, 6742890, 8931010, 11568172, 14957568, 18980000, 24048362, 29985228, 37340352, 45859730, 56261250
OFFSET
1,2
COMMENTS
a(n) = A228314(n,n).
LINKS
B. E. Sagan, Y-N. Yeh and P. Zhang, The Wiener Polynomial of a Graph, Internat. J. of Quantum Chem., 60, 1996, 959-969.
FORMULA
a(n) = n^2*(n^2-1)*(7*n^2+12*n-3)/96 if n is odd; a(n) = n^4*(7*n^2+12*n+8)/96 if n is even.
G.f.: 2*x^2*(5 + 26*x + 132*x^2 + 183*x^3 +280*x^4 + 132*x^5 +74*x^6 + 7*x^7 + x^8) / ((1-x)^7*(1+x)^5).
MAPLE
a := proc (n) if `mod`(n, 2) = 1 then (1/96)*n^2*(n^2-1)*(7*n^2+12*n-3) else (1/96)*n^4*(7*n^2+12*n+8) end if end proc: seq(a(n), n = 1 .. 30);
CROSSREFS
Sequence in context: A271035 A108276 A264159 * A228310 A164546 A221552
KEYWORD
nonn,easy
AUTHOR
Emeric Deutsch, Aug 26 2013
STATUS
approved