login
A228309
The hyper-Wiener index of the odd graph O_n (n>=2).
1
3, 105, 2590, 57015, 1165626, 22834812, 433178460, 8036703675, 146451924190, 2632740298188, 46790614294788, 824017920352900, 14397367664647800, 249906966022292400, 4312825574857068600, 74063143648813911075
OFFSET
2,1
COMMENTS
The odd graph O_n is a graph whose vertices represent the (n-1)-subsets of {1,2,...,2n-1} and two vertices are connected if and only if they correspond to disjoint subsets. It is a distance regular graph.
REFERENCES
N. Biggs, Algebraic Graph Theory, Cambridge, 2nd. Ed., 1993, p. 161.
R. Balakrishnan, N. Sridharan and K. Viswanathan Iyer, The Wiener index of odd graphs, J. Indian. Inst. Sci., vol. 86, 2006, 527-531.
LINKS
R. Balakrishnan, N. Sridharan and K. Viswanathan Iyer,, The Wiener index of odd graphs, J. Ind. Inst. Sci., vol. 86, no. 5, 2006. [Cached copy]
Eric Weisstein's World of Mathematics, Odd Graph.
FORMULA
A formula is "hidden" in the Maple program. B(n) and C(n) are the intersection arrays of O_n, H(n) is the Hosoya-Wiener polynomial of O_n, and HWi(n) is the hyper-Wiener index of O_n.
MAPLE
B := proc (n) options operator, arrow: [seq(n-floor((1/2)*m), m = 1 .. n-1)] end proc: C := proc (n) options operator, arrow: [seq(ceil((1/2)*m), m = 1 .. n-1)] end proc: H := proc (n) options operator, arrow: (1/2)*binomial(2*n-1, n-1)*(sum((product(B(n)[r]/C(n)[r], r = 1 .. j))*t^j, j = 1 .. n-1)) end proc: HWi := proc (n) options operator, arrow: subs(t = 1, diff(H(n), t)+(1/2)*(diff(H(n), `$`(t, 2)))) end proc: seq(HWi(n), n = 2 .. 20);
CROSSREFS
KEYWORD
nonn
AUTHOR
Emeric Deutsch, Aug 20 2013
STATUS
approved