login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

The hyper-Wiener index of the hypercube graph Q(n) (n>=2).
0

%I #13 Dec 13 2024 17:24:53

%S 10,72,448,2560,13824,71680,360448,1769472,8519680,40370176,188743680,

%T 872415232,3992977408,18119393280,81604378624,365072220160,

%U 1623497637888,7181185318912,31610959298560,138538465099776,604731395276800,2630031813640192

%N The hyper-Wiener index of the hypercube graph Q(n) (n>=2).

%C The hypercube graph Q(n) has as vertices the binary words of length n and an edge joins two vertices whenever the corresponding binary words differ in just one place.

%C Q(n) is distance-transitive and therefore also distance-regular. The intersection array is {n,n-1,n-2,...,1; 1,2,3,...,n-1,n}.

%D Norman Biggs, Algebraic Graph Theory, 2nd ed. Cambridge University Press, 1993 (p. 161).

%H R. Balakrishnan, N. Sridharan and K. Viswanathan Iyer,, <a href="/A136328/a136328.pdf">The Wiener index of odd graphs</a>, J. Ind. Inst. Sci., vol. 86, no. 5, 2006. [Cached copy]

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/HypercubeGraph.html">Hypercube Graph</a>.

%H <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (12,-48,64)

%F a(n) = 4^{n-2}*n*(3+n).

%F G.f.: 2*x^2*(5 - 24*x + 32*x^2)/(1-4*x)^3.

%F The Hosoya-Wiener polynomial of Q(n) is 2^{n-1}*((1+t)^n - 1).

%p a := proc (n) options operator, arrow: 4^(n-2)*n*(3+n) end proc: seq(a(n), n = 2 .. 25);

%t LinearRecurrence[{12,-48,64},{10,72,448},30] (* _Harvey P. Dale_, Dec 13 2024 *)

%Y Cf. A143376, A002697

%K nonn,easy

%O 2,1

%A _Emeric Deutsch_, Aug 20 2013