login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A158317
a(n) = 400*n - 1.
2
399, 799, 1199, 1599, 1999, 2399, 2799, 3199, 3599, 3999, 4399, 4799, 5199, 5599, 5999, 6399, 6799, 7199, 7599, 7999, 8399, 8799, 9199, 9599, 9999, 10399, 10799, 11199, 11599, 11999, 12399, 12799, 13199, 13599, 13999, 14399, 14799, 15199
OFFSET
1,1
COMMENTS
The identity (400*n-1)^2-(400*n^2-2*n)*(20)^2=1 can be written as a(n)^2-A158316(n)*(20)^2 = 1.
LINKS
Vincenzo Librandi, X^2-AY^2=1
E. J. Barbeau, Polynomial Excursions, Chapter 10: Diophantine equations (2010), pages 84-85 (row 15 in the first table at p. 85, case d(t) = t*(20^2*t-2)).
FORMULA
a(n) = 2*a(n-1)-a(n-2).
G.f.: x*(399+x)/(1-x)^2.
MATHEMATICA
LinearRecurrence[{2, -1}, {399, 799}, 50]
PROG
(Magma) I:=[399, 799]; [n le 2 select I[n] else 2*Self(n-1)-Self(n-2): n in [1..50]];
(PARI) a(n) = 400*n - 1.
CROSSREFS
Cf. A158316.
Sequence in context: A176911 A202158 A126231 * A227008 A253597 A006972
KEYWORD
nonn,easy
AUTHOR
Vincenzo Librandi, Mar 16 2009
STATUS
approved