The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A253597 Least Lucas-Carmichael number divisible by the n-th prime. 3
399, 935, 399, 935, 2015, 935, 399, 4991, 51359, 2015, 1584599, 20705, 5719, 18095, 2915, 46079, 162687, 22847, 46079, 16719263, 12719, 7055, 80189, 104663, 20705, 482143, 196559, 60059, 90287, 162687, 3441239, 13971671 (list; graph; refs; listen; history; text; internal format)
OFFSET
2,1
COMMENTS
Has any odd prime number at least one Lucas-Carmichael multiple?
LINKS
Tim Johannes Ohrtmann and Charles R Greathouse IV, Table of n, a(n) for n = 2..1000 (terms up to 202 from Ohrtmann)
FORMULA
a(n) >> n^2 log^2 n. - Charles R Greathouse IV, Feb 03 2015
EXAMPLE
a(2) = 399 because this is the least Lucas-Carmichael number which is divisible by 3 (the second prime number).
MATHEMATICA
LucasCarmichaelQ[n_] := Block[{fi = FactorInteger@ n}, !PrimeQ@ n && Times @@ (Last@# & /@ fi) == 1 && Plus @@ Mod[n + 1, 1 + First@# & /@ fi] == 0]; f[n_] := Block[{k = p = Prime@ n}, While[ !LucasCarmichaelQ@ k, k += p]; k]; Array[f, 35, 2] (* Robert G. Wilson v, Feb 11 2015 *)
PROG
(PARI) is_A006972(n)=my(f=factor(n)); for(i=1, #f[, 1], if((n+1)%(f[i, 1]+1) || f[i, 2]>1, return(0))); #f[, 1]>1
a(n) = pn = prime(n); ln = 1; until (is_A006972(ln) && (ln % pn == 0), ln++); ln;
(PARI) is_A006972(n)=my(f=factor(n)); for(i=1, #f~, if((n+1)%(f[i, 1]+1) || f[i, 2]>1, return(0))); #f~>1
a(n)=my(p=prime(n), c=p^2+p, t=p); while(!is_A006972(t+=c), ); t \\ Charles R Greathouse IV, Feb 03 2015
CROSSREFS
Sequence in context: A126231 A158317 A227008 * A006972 A216925 A292573
KEYWORD
nonn
AUTHOR
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 21 13:39 EDT 2024. Contains 372736 sequences. (Running on oeis4.)