login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A253597
Least Lucas-Carmichael number divisible by the n-th prime.
3
399, 935, 399, 935, 2015, 935, 399, 4991, 51359, 2015, 1584599, 20705, 5719, 18095, 2915, 46079, 162687, 22847, 46079, 16719263, 12719, 7055, 80189, 104663, 20705, 482143, 196559, 60059, 90287, 162687, 3441239, 13971671
OFFSET
2,1
COMMENTS
Has any odd prime number at least one Lucas-Carmichael multiple?
LINKS
Tim Johannes Ohrtmann and Charles R Greathouse IV, Table of n, a(n) for n = 2..1000 (terms up to 202 from Ohrtmann)
FORMULA
a(n) >> n^2 log^2 n. - Charles R Greathouse IV, Feb 03 2015
EXAMPLE
a(2) = 399 because this is the least Lucas-Carmichael number which is divisible by 3 (the second prime number).
MATHEMATICA
LucasCarmichaelQ[n_] := Block[{fi = FactorInteger@ n}, !PrimeQ@ n && Times @@ (Last@# & /@ fi) == 1 && Plus @@ Mod[n + 1, 1 + First@# & /@ fi] == 0]; f[n_] := Block[{k = p = Prime@ n}, While[ !LucasCarmichaelQ@ k, k += p]; k]; Array[f, 35, 2] (* Robert G. Wilson v, Feb 11 2015 *)
PROG
(PARI) is_A006972(n)=my(f=factor(n)); for(i=1, #f[, 1], if((n+1)%(f[i, 1]+1) || f[i, 2]>1, return(0))); #f[, 1]>1
a(n) = pn = prime(n); ln = 1; until (is_A006972(ln) && (ln % pn == 0), ln++); ln;
(PARI) is_A006972(n)=my(f=factor(n)); for(i=1, #f~, if((n+1)%(f[i, 1]+1) || f[i, 2]>1, return(0))); #f~>1
a(n)=my(p=prime(n), c=p^2+p, t=p); while(!is_A006972(t+=c), ); t \\ Charles R Greathouse IV, Feb 03 2015
CROSSREFS
KEYWORD
nonn
AUTHOR
STATUS
approved