login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A227008
Numbers k such that Sum_{j=1..k} (sigma(j) + phi(j) + tau(j)) == 0 (mod k).
0
1, 399, 872, 1214, 2090, 5200, 5588, 21208, 29152, 638049, 1627676, 151732410, 274845607, 3224070252, 54892040166, 69020111756, 175288968221
OFFSET
1,2
COMMENTS
a(17) > 10^11. - Donovan Johnson, Jul 07 2013
a(18) > 5*10^11. - Giovanni Resta, Jul 11 2013
EXAMPLE
Sum_{j=1..399} sigma(j) = 130973;
Sum_{j=1..399} phi(j) = 48518;
Sum_{j=1..399} tau(j) = 2453;
(130973 + 48518 + 2453) / 399 = 456.
MAPLE
with(numtheory); ListA227008:=proc(q, h) local a, n; a:=0;
for n from 1 to q do a:=a+sigma(n)+phi(n)+tau(n); if (a mod n)=0 then print(n); fi; od; end: ListA227008(10^9);
PROG
(PARI) s=0; for(n=1, 274845607, s=s+sigma(n)+eulerphi(n)+numdiv(n); if(s%n==0, print(n " " s))) /* Donovan Johnson, Jul 06 2013 */
CROSSREFS
KEYWORD
nonn,more
AUTHOR
Paolo P. Lava, Jun 27 2013
EXTENSIONS
a(11)-a(14) from Donovan Johnson, Jul 06 2013
a(15)-a(16) from Donovan Johnson, Jul 07 2013
a(17) from Giovanni Resta, Jul 11 2013
STATUS
approved