login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A233541
a(n) = sigma(n) + phi(n) + d(n).
3
3, 6, 8, 12, 12, 18, 16, 23, 22, 26, 24, 38, 28, 34, 36, 44, 36, 51, 40, 56, 48, 50, 48, 76, 54, 58, 62, 74, 60, 88, 64, 85, 72, 74, 76, 112, 76, 82, 84, 114, 84, 116, 88, 110, 108, 98, 96, 150, 102, 119, 108, 128, 108, 146, 116, 152, 120, 122, 120, 196, 124
OFFSET
1,1
COMMENTS
a(n) is the sum of the divisors of n plus the number of positive integers less than or equal to n and relatively prime to n plus the number of divisors of n.
If n is a prime, then a(n) = A064840(n). If n is a prime or a semiprime, then a(n) = 2(d(n) + n - 1).
LINKS
FORMULA
a(n) = A000203(n) + A000010(n) + A000005(n).
Dirichlet g.f.: (zeta(s)^3 + zeta(s-1)*zeta(s)^2 + zeta(s-1))/zeta(s). - Ilya Gutkovskiy, Dec 07 2016
EXAMPLE
a(6) = 18; sigma(6) + phi(6) + d(6) = 12 + 2 + 4 = 18.
MAPLE
with(numtheory); A233541:=n->sigma(n) + phi(n) + tau(n); seq(A233541(n), n=1..100);
MATHEMATICA
Table[DivisorSigma[0, n] + DivisorSigma[1, n] + EulerPhi[n], {n, 100}]
PROG
(PARI) a(n) = sigma(n) + eulerphi(n) + numdiv(n); \\ Michel Marcus, Dec 07 2016
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Wesley Ivan Hurt, Dec 12 2013
STATUS
approved