login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Numbers k such that Sum_{j=1..k} (sigma(j) + phi(j) + tau(j)) == 0 (mod k).
0

%I #27 Feb 11 2021 01:25:56

%S 1,399,872,1214,2090,5200,5588,21208,29152,638049,1627676,151732410,

%T 274845607,3224070252,54892040166,69020111756,175288968221

%N Numbers k such that Sum_{j=1..k} (sigma(j) + phi(j) + tau(j)) == 0 (mod k).

%C a(17) > 10^11. - _Donovan Johnson_, Jul 07 2013

%C a(18) > 5*10^11. - _Giovanni Resta_, Jul 11 2013

%e Sum_{j=1..399} sigma(j) = 130973;

%e Sum_{j=1..399} phi(j) = 48518;

%e Sum_{j=1..399} tau(j) = 2453;

%e (130973 + 48518 + 2453) / 399 = 456.

%p with(numtheory); ListA227008:=proc(q,h) local a, n; a:=0;

%p for n from 1 to q do a:=a+sigma(n)+phi(n)+tau(n); if (a mod n)=0 then print(n); fi; od; end: ListA227008(10^9);

%o (PARI) s=0; for(n=1, 274845607, s=s+sigma(n)+eulerphi(n)+numdiv(n); if(s%n==0, print(n " " s))) /* _Donovan Johnson_, Jul 06 2013 */

%Y Cf. A000005, A000010, A000203.

%Y Cf. A006218, A002088, A024916.

%Y Cf. A233541.

%K nonn,more

%O 1,2

%A _Paolo P. Lava_, Jun 27 2013

%E a(11)-a(14) from _Donovan Johnson_, Jul 06 2013

%E a(15)-a(16) from _Donovan Johnson_, Jul 07 2013

%E a(17) from _Giovanni Resta_, Jul 11 2013