|
|
A176913
|
|
Numbers n with maximal exponent in prime factorization equal to 1, such that n+1 has maximal exponent 2, n+2 has maximal exponent 3, and n+3 has maximal exponent 4.
|
|
0
|
|
|
2022, 11149, 11373, 17574, 22381, 25037, 26701, 27949, 31210, 36123, 49974, 61395, 65581, 67373, 70541, 75373, 75949, 88747, 97549, 103373, 108294, 110886, 112045, 114774, 118285, 147174, 159757, 162349, 172717, 174390, 175373, 195531, 202957
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
LINKS
|
Table of n, a(n) for n=1..33.
|
|
EXAMPLE
|
a(1) = 2022 from 2022=2*3*337, 2023=7*17^2, 2024=2^3*11*23, and 2025=3^4*5^2.
|
|
MATHEMATICA
|
f[n_]:=Max[Last/@FactorInteger[n]]; lst={}; Do[If[f[n]==1&&f[n+1]==2&&f[n+2]==3&&f[n+3]==4, AppendTo[lst, n]], {n, 2, 9!}]; lst
|
|
CROSSREFS
|
Cf. A051903
Sequence in context: A252327 A252326 A119423 * A013687 A257766 A126821
Adjacent sequences: A176910 A176911 A176912 * A176914 A176915 A176916
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
Vladimir Joseph Stephan Orlovsky, Apr 28 2010
|
|
EXTENSIONS
|
Edited by N. J. A. Sloane, Dec 29 2021
|
|
STATUS
|
approved
|
|
|
|