%I
%S 2022,11149,11373,17574,22381,25037,26701,27949,31210,36123,49974,
%T 61395,65581,67373,70541,75373,75949,88747,97549,103373,108294,110886,
%U 112045,114774,118285,147174,159757,162349,172717,174390,175373,195531,202957
%N Numbers n with maximal exponent in prime factorization equal to 1, such that n+1 has maximal exponent 2, n+2 has maximal exponent 3, and n+3 has maximal exponent 4.
%e a(1) = 2022 from 2022=2*3*337, 2023=7*17^2, 2024=2^3*11*23, and 2025=3^4*5^2.
%t f[n_]:=Max[Last/@FactorInteger[n]]; lst={};Do[If[f[n]==1&&f[n+1]==2&&f[n+2]==3&&f[n+3]==4,AppendTo[lst,n]],{n,2,9!}];lst
%Y Cf. A051903
%K nonn
%O 1,1
%A _Vladimir Joseph Stephan Orlovsky_, Apr 28 2010
%E Edited by _N. J. A. Sloane_, Dec 29 2021
