login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A351476
If F is the Fermat point of a triangle ABC with A < B < C < 2*Pi/3, where AB, BC, CA, FA, FB and FC are all positive integers, then, this sequence gives the sum FA + FB + FC when gcd(a, b, c) = A351477(n).
7
784, 1029, 6845, 80089, 24843, 109561, 109561, 5239, 24037, 47045, 27735, 6760, 477481, 21904, 57967, 186245, 365403, 20280, 400445, 356168, 159953, 190463, 718205, 836405, 11809, 178771, 1432443, 1127307, 22984, 34295, 22477, 157339, 6723649, 44403, 974408
OFFSET
1,1
COMMENTS
Inspired by Project Euler, Problem 143 (see link) where such a triangle is called a "Torricelli triangle".
Differs from A336329 where ABC is a primitive integer-sided triangle with A < B < C < 2*Pi/3 and only FA+FB+FC is an integer; in fact, terms of A336329 are the sum of 3 fractions of the form FA = p/t, FB = q/t, FC = r/t but (p+q+r)/t is an integer. Here, FA, FB and FC are all integers and the sums FA+FB+FC are displayed according to same order as in A336329. The corresponding common denominators t of the fractions (p/t, q/t, r/t) are in A351477.
If FA + FB + FC = d, then we have this "beautifully symmetric equation" between a, b, c and d (see Martin Gardner):
3*(a^4 + b^4 + c^4 + d^4) = (a^2 + b^2 + c^2 + d^2)^2.
=> d = sqrt(((a^2 + b^2 + c^2)/2) + (1/2) * sqrt(6*(a^2*b^2 + b^2*c^2 + c^2*a^2) - 3*(a^4 + b^4 + c^4))).
REFERENCES
Martin Gardner, Mathematical Circus, Elegant triangles, First Vintage Books Edition, 1979, p. 65.
FORMULA
a(n) = A336329(n) * A351477(n).
If FA + FB + FC = d, then
d^2 = (1/2) * (a^2 + b^2 + c^2) + 2 * S * sqrt(3) where S = area of triangle ABC.
EXAMPLE
a(1) = FA + FB + FC = 325 + 264 + 195 = 784, corresponding to first triple (399, 455, 511) whose gcd = 7.
a(6) = FA + FB + FC = 70720 + 34200 + 4641 = 109561, corresponding to triple (36741, 73151, 92680) whose gcd = 331.
a(7) = FA + FB + FC = 91200 + 12376 + 8985 = 109561, corresponding to triple (16219, 94335, 97976) whose gcd = 331.
PROG
(PARI) lista(nn) = {my(d); for(c=4, nn, for(b=ceil(c/sqrt(3)), c-1, for(a=1+(sqrt(4*c^2-3*b^2)-b)\2, b-1, if(gcd([a, b, c])==1 && issquare(d=6*(a^2*b^2+b^2*c^2+c^2*a^2)-3*(a^4+b^4+c^4)) && issquare(d=(a^2+b^2+c^2+sqrtint(d))/2), d = sqrtint(d); my(s = numerator(sqrtint(((2*b*c)^2 - (b^2+c^2-d^2)^2)/3)/d) + numerator(sqrtint(((2*a*b)^2 - (a^2+b^2-d^2)^2)/3)/d) + numerator(sqrtint(((2*a*c)^2 - (a^2+c^2-d^2)^2)/3)/d)); print1(s, ", "); ); ); ); ); } \\ Michel Marcus, Mar 02 2022
KEYWORD
nonn
AUTHOR
Bernard Schott, Feb 12 2022
EXTENSIONS
More terms from Jinyuan Wang, Feb 17 2022
STATUS
approved