login
A336331
Middle side of primitive integer-sided triangles with A < B < C < 2*Pi/3 and such that FA + FB + FC is an integer where F is the Fermat point of the triangle.
10
65, 88, 147, 168, 185, 221, 285, 312, 315, 343, 392, 377, 464, 343, 408, 589, 725, 901, 931, 1085, 1120, 1240, 1147, 1128, 1208, 1400, 1105, 1099, 1005, 1464, 1541, 1544, 1635, 1403, 1463, 1387, 1744, 1891, 1617, 1505, 1769, 1885, 2072, 2345, 1713, 2165, 2667, 2784, 2855
OFFSET
1,1
COMMENTS
Inspired by Project Euler, Problem 143 (see link).
For the corresponding primitive triples and miscellaneous properties and references, see A336328.
If FA + FB + FC = d, then we have this "beautifully symmetric equation" between a, b, c and d (see Martin Gardner):
3*(a^4 + b^4 + c^4 + d^4) = (a^2 + b^2 + c^2 + d^2)^2.
This sequence is not increasing. For example, a(11) = 392 for triangle with largest side = 407 while a(12) = 377 for triangle with largest side = 437.
REFERENCES
Martin Gardner, Mathematical Circus, Elegant triangles, First Vintage Books Edition, 1979, p. 65.
FORMULA
a(n) = A336328(n, 2).
EXAMPLE
a(1) = 65 because the first triple is (57, 65, 73) with corresponding d = FA + FB + FC = 264/7 + 195/7 + 325/7 = 112 and the symmetric relation satisfies: 3*(57^4 + 65^4 + 73^4 + 112^4) = (57^2 + 65^2 + 73^2 + 112^2)^2 = 642470409.
CROSSREFS
Cf. A336328 (triples), A336329 (FA + FB + FC), A336330 (smallest side), this sequence (middle side), A336332 (largest side), A336333 (perimeter).
Cf. A072053 (middle sides: primitives and multiples).
Sequence in context: A299247 A015788 A072053 * A160055 A250642 A280755
KEYWORD
nonn
AUTHOR
Bernard Schott, Jul 20 2020
STATUS
approved