login
A336333
Perimeter of primitive integer-sided triangles with A < B < C < 2*Pi/3 and such that FA + FB + FC is an integer where F is the Fermat point of the triangle.
11
195, 256, 342, 500, 490, 612, 630, 750, 972, 882, 1122, 961, 1218, 1071, 1140, 1682, 1856, 2703, 2508, 3015, 2990, 3636, 3348, 3572, 3136, 3364, 3640, 3328, 3249, 3362, 3312, 3330, 4530, 4250, 4921, 4455, 4840, 4565, 5054, 4945, 5307, 5655, 5440, 6440, 5746, 6561, 5588
OFFSET
1,1
COMMENTS
Inspired by Project Euler, Problem 143 (see link).
For the corresponding primitive triples and miscellaneous properties and references, see A336328.
If FA + FB + FC = d, then we have this "beautifully symmetric equation" between a, b, c and d (see Martin Gardner):
3*(a^4 + b^4 + c^4 + d^4) = (a^2 + b^2 + c^2 + d^2)^2.
This sequence is not increasing. For example, a(4) = 500 for triangle with largest side = 205 while a(5) = 490 for triangle with largest side = 208.
REFERENCES
Martin Gardner, Mathematical Circus, Elegant triangles, First Vintage Books Edition, 1979, p. 65.
FORMULA
a(n) = A336328(n, 1) + A336328(n, 2) + A336328(n, 3).
a(n) = A336330(n) + A336331(n) + A336332(n).
EXAMPLE
a(1) = 195 because the first triple is (57, 65, 73) with corresponding d = FA + FB + FC = 264/7 + 195/7 + 325/7 = 112 and 57 + 65 + 73 = 195.
CROSSREFS
Cf. A336328 (triples), A336329 (FA + FB + FC), A336330 (smallest side), A336331 (middle side), A336332 (largest side), A351476, A351477.
Sequence in context: A234814 A154938 A234100 * A351803 A080394 A323975
KEYWORD
nonn
AUTHOR
Bernard Schott, Jul 21 2020
STATUS
approved