login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A234100
Products p*q*r of distinct primes for which (p*q*r - 1)/2 is prime.
4
195, 255, 399, 455, 483, 555, 615, 627, 663, 759, 795, 915, 935, 1095, 1235, 1239, 1295, 1419, 1455, 1479, 1515, 1547, 1595, 1659, 1767, 1955, 2067, 2139, 2235, 2247, 2343, 2387, 2555, 2595, 2607, 2639, 2847, 2895, 2919, 2967, 3219, 3243, 3335, 3395, 3399
OFFSET
1,1
LINKS
Harvey P. Dale, Table of n, a(n) for n = 1..274 (all terms up to 20000)
EXAMPLE
97 = (3*5*13 - 1)/2, and 3*5*13 is the least product p*q*r of 3 distinct primes for which (p*q*r - 1)/2 is prime, so a(1) = 3*5*13.
MATHEMATICA
t = Select[Range[1, 10000, 2], Map[Last, FactorInteger[#]] == Table[1, {3}] &]; Take[(t - 1)/2, 120] (* A234099 *)
v = Flatten[Position[PrimeQ[(t - 1)/2], True]] ; w = Table[t[[v[[n]]]], {n, 1, Length[v]}] (* this sequence *)
(w - 1)/2 (* A234101 *) (* Peter J. C. Moses, Dec 23 2013 *)
With[{upto=4000}, Select[Union[Times@@@Select[Subsets[Prime[ Range[ PrimePi[ upto/ 6]]], {3}], PrimeQ[(Times@@#-1)/2]&]], #<=upto&]] (* Harvey P. Dale, May 12 2017 *)
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling, Dec 27 2013
STATUS
approved