login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A234098
Primes of the form (p*q + 1)/2, where p and q are distinct primes.
4
11, 17, 29, 43, 47, 67, 71, 73, 89, 101, 103, 107, 109, 127, 151, 191, 197, 223, 227, 241, 251, 269, 277, 283, 317, 349, 359, 373, 397, 409, 433, 457, 461, 467, 487, 521, 541, 569, 571, 631, 643, 647, 659, 673, 701, 709, 719, 733, 739, 751, 757, 769, 821
OFFSET
1,1
LINKS
EXAMPLE
11 = (3*7 + 1)/2, 17 = (5*7 + 1)/2.
MATHEMATICA
t = Select[Range[1, 7000, 2], Map[Last, FactorInteger[#]] == Table[1, {2}] &]; Take[(t + 1)/2, 120] (* A234096 *)
v = Flatten[Position[PrimeQ[(t + 1)/2], True]] ; w = Table[t[[v[[n]]]], {n, 1, Length[v]}] (* A233562 *)
(w + 1)/2 (* A234098 *) (* Peter J. C. Moses, Dec 23 2013 *)
PROG
(Haskell)
a234098 n = a234098_list !! (n-1)
a234098_list = filter ((== 1) . a010051') $
map ((flip div 2) . (+ 1)) a046388_list
-- Reinhard Zumkeller, Jan 02 2014
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling, Dec 27 2013
STATUS
approved