OFFSET
1,1
COMMENTS
(-33, a(1)) and (A129298(n), a(n+1)) are solutions (x, y) to the Diophantine equation x^2+(x+89)^2 = y^2.
lim_{n -> infinity} a(n)/a(n-3) = 3+2*sqrt(2).
lim_{n -> infinity} a(n)/a(n-1) = (107+42*sqrt(2))/89 for n mod 3 = {0, 2}.
lim_{n -> infinity} a(n)/a(n-1) = (8979+2990*sqrt(2))/89^2 for n mod 3 = 1.
LINKS
Harvey P. Dale, Table of n, a(n) for n = 1..1000
Index entries for linear recurrences with constant coefficients, signature (0,0,6,0,0,-1).
FORMULA
a(n) = 6*a(n-3)-a(n-6) for n > 6; a(1)=65, a(2)=89, a(3)=149, a(4)=241, a(5)=445, a(6)=829.
G.f.: (1-x)*(65+154*x+303*x^2+154*x^3+65*x^4) / (1-6*x^3+x^6).
a(3*k-1) = 89*A001653(k) for k >= 1.
EXAMPLE
MATHEMATICA
LinearRecurrence[{0, 0, 6, 0, 0, -1}, {65, 89, 149, 241, 445, 829}, 40] (* Harvey P. Dale, Feb 04 2015 *)
PROG
(PARI) {forstep(n=-36, 10000000, [3, 1], if(issquare(2*n^2+178*n+7921, &k), print1(k, ", ")))}
CROSSREFS
KEYWORD
nonn
AUTHOR
Klaus Brockhaus, May 04 2009
STATUS
approved