login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A146978
Irregular triangle read by rows: coefficients of the two-variable character of the vertex operator superalgebra A_Ru related to the sporadic simple Rudvalis group.
0
1, 784, 378, 144452, 92512, 20475, 11327232, 8128792, 2843568, 376740, 40116600, 30421755, 13123110, 3108105, 376740, 20475, 378, 1, 490068257, 373673216, 161446572, 35904960, 3108105, 2096760960, 1649657520, 794670240, 226546320, 35904960, 2843568, 92512, 784
OFFSET
0,2
COMMENTS
Note that A_Ru is not the Rudvalis sporadic simple group Ru, rather it is a certain vertex operator superalgebra of rank 28 whose full automorphism group is a direct product of a cyclic group of order seven with Ru. - N. J. A. Sloane, Sep 17 2020
The row index n (the "degree") runs through nonnegative integers and half-integers, while the column index m (the "charge") runs through a finite number of nonnegative even integers (see the table in the Example section). If n is an integer row n has length n+1 (so the maximal index is m=2n); for half-integers n = 1/2, 3/2, 5/2, ... the row lengths are 0, 0, 0, 8, 8, 9, 9, 10, 10... (the pattern of repeated consecutive integers seems to continue). - Andrey Zabolotskiy, Sep 23 2020
Rows of length zero have simply been omitted.
LINKS
John F. Duncan, Moonshine for Rudvalis's sporadic group I, arXiv:math/0609449 [math.RT], November, 2008 (see pages 51-53)
John F. Duncan, Moonshine for Rudvalis's sporadic group II, arXiv:math/0611355 [math.RT], November, 2008
FORMULA
T(n+7/2, 2*(7-k)) = T(n+k, 2*k) = T(n+14-k, 28-2*k) for n = 0..3, k = 0..7. Also, T(k, 2*k) = binomial(28, 2*k). - Andrey Zabolotskiy, Feb 18 2019
EXAMPLE
Duncan: "The column headed m is the coefficient of p^m (as a series in q) and the row headed n is the coefficient of q^(n-c/24) (as a series in p). The coefficients of p^-m and p^m coincide and all subspaces of odd charge vanish."
-------------------------------------------------------------------------|
.....|m=0...........|m=2..........|m=4..........|m=6.........|m=8........|
-------------------------------------------------------------------------|
n=..0|............1.|.............|.............|............|...........|
n=1/2|..............|.............|.............|............|...........|
n=..1|..........784.|.........378.|.............|............|...........|
n=3/2|..............|.............|.............|............|...........|
n=..2|.......144452.|.......92512.|.......20475.|............|...........|
n=.5/2|.............|.............|.............|............|...........|
n=...3|....11327232.|.....8128792.|.....2843568.|.....376740.|...........|
n=.7/2|....40116600.|....30421755.|....13123110.|....3108105.|.....376740|
n=...4|...490068257.|...373673216.|...161446572.|...35904960.|....3108105|
n=.9/2|..2096760960.|..1649657520.|...794670240.|..226546320.|...35904960|
n=...5|.13668945136.|.10818453324.|..5284484352.|.1513872360.|..226546320|
n=11/2|.56547022140.|.45624923820.|.23757475560.|.7766243940.|.1513872360|
-------------------------------------------------------------------------|
CROSSREFS
Cf. A003918.
Sequence in context: A204279 A158399 A007243 * A095954 A351476 A257355
KEYWORD
nonn,tabf
AUTHOR
Jonathan Vos Post, Nov 04 2008
EXTENSIONS
Corrected by Andrey Zabolotskiy, Feb 18 2019
STATUS
approved