Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #31 Feb 10 2022 06:56:00
%S 1,784,378,144452,92512,20475,11327232,8128792,2843568,376740,
%T 40116600,30421755,13123110,3108105,376740,20475,378,1,490068257,
%U 373673216,161446572,35904960,3108105,2096760960,1649657520,794670240,226546320,35904960,2843568,92512,784
%N Irregular triangle read by rows: coefficients of the two-variable character of the vertex operator superalgebra A_Ru related to the sporadic simple Rudvalis group.
%C Note that A_Ru is not the Rudvalis sporadic simple group Ru, rather it is a certain vertex operator superalgebra of rank 28 whose full automorphism group is a direct product of a cyclic group of order seven with Ru. - _N. J. A. Sloane_, Sep 17 2020
%C The row index n (the "degree") runs through nonnegative integers and half-integers, while the column index m (the "charge") runs through a finite number of nonnegative even integers (see the table in the Example section). If n is an integer row n has length n+1 (so the maximal index is m=2n); for half-integers n = 1/2, 3/2, 5/2, ... the row lengths are 0, 0, 0, 8, 8, 9, 9, 10, 10... (the pattern of repeated consecutive integers seems to continue). - _Andrey Zabolotskiy_, Sep 23 2020
%C Rows of length zero have simply been omitted.
%H John F. Duncan, <a href="https://arxiv.org/abs/math/0609449">Moonshine for Rudvalis's sporadic group I</a>, arXiv:math/0609449 [math.RT], November, 2008 (see pages 51-53)
%H John F. Duncan, <a href="https://arxiv.org/abs/math/0611355">Moonshine for Rudvalis's sporadic group II</a>, arXiv:math/0611355 [math.RT], November, 2008
%F T(n+7/2, 2*(7-k)) = T(n+k, 2*k) = T(n+14-k, 28-2*k) for n = 0..3, k = 0..7. Also, T(k, 2*k) = binomial(28, 2*k). - _Andrey Zabolotskiy_, Feb 18 2019
%e Duncan: "The column headed m is the coefficient of p^m (as a series in q) and the row headed n is the coefficient of q^(n-c/24) (as a series in p). The coefficients of p^-m and p^m coincide and all subspaces of odd charge vanish."
%e -------------------------------------------------------------------------|
%e .....|m=0...........|m=2..........|m=4..........|m=6.........|m=8........|
%e -------------------------------------------------------------------------|
%e n=..0|............1.|.............|.............|............|...........|
%e n=1/2|..............|.............|.............|............|...........|
%e n=..1|..........784.|.........378.|.............|............|...........|
%e n=3/2|..............|.............|.............|............|...........|
%e n=..2|.......144452.|.......92512.|.......20475.|............|...........|
%e n=.5/2|.............|.............|.............|............|...........|
%e n=...3|....11327232.|.....8128792.|.....2843568.|.....376740.|...........|
%e n=.7/2|....40116600.|....30421755.|....13123110.|....3108105.|.....376740|
%e n=...4|...490068257.|...373673216.|...161446572.|...35904960.|....3108105|
%e n=.9/2|..2096760960.|..1649657520.|...794670240.|..226546320.|...35904960|
%e n=...5|.13668945136.|.10818453324.|..5284484352.|.1513872360.|..226546320|
%e n=11/2|.56547022140.|.45624923820.|.23757475560.|.7766243940.|.1513872360|
%e -------------------------------------------------------------------------|
%Y Cf. A003918.
%K nonn,tabf
%O 0,2
%A _Jonathan Vos Post_, Nov 04 2008
%E Corrected by _Andrey Zabolotskiy_, Feb 18 2019