login
A351474
Numbers m such that the largest digit in the decimal expansion of 1/m is 8.
6
7, 12, 14, 26, 28, 35, 48, 54, 55, 56, 63, 65, 70, 72, 78, 79, 93, 117, 120, 123, 125, 128, 140, 175, 176, 186, 192, 195, 205, 224, 239, 259, 260, 264, 280, 296, 312, 318, 328, 350, 372, 416, 432, 438, 448, 465, 480, 540, 542, 546, 548, 550, 555, 560, 572, 584, 594, 630, 632, 650, 675
OFFSET
1,1
COMMENTS
If k is a term, 10*k is also a term. First few primitive terms are 7, 12, 14, 26, 28, 35, 48, 54, 55, 56, 63, 65, 72, ...
The seven primes up to 2.7*10^8 are 7, 79, 239, 62003, 538987, 35121409, 265371653 (see comments in A333237, example section and Crossrefs).
FORMULA
A333236(a(n)) = 8.
EXAMPLE
As 1/7 = 0.142857142857142857..., 7 is a term.
As 1/26 = 0.0384615384615384615..., 26 is another term.
MATHEMATICA
f[n_] := Union[ Flatten[ RealDigits[ 1/n][[1]] ]]; Select[Range@1500000, Max@ f@# == 8 &]
PROG
(PARI) isok(m) = my(m2=valuation(m, 2), m5=valuation(m, 5)); vecmax(digits(floor(10^(max(m2, m5) + znorder(Mod(10, m/2^m2/5^m5))+1)/m))) == 8; \\ Michel Marcus, Feb 26 2022
(Python)
from itertools import count, islice
from sympy import multiplicity, n_order
def A351474_gen(startvalue=1): # generator of terms >= startvalue
for a in count(max(startvalue, 1)):
m2, m5 = (~a&a-1).bit_length(), multiplicity(5, a)
k, m = 10**max(m2, m5), 10**n_order(10, a//(1<<m2)//5**m5)-1
if max(max(str(c:=k//a)), max(str(m*k//a-c*m)))=='8':
yield a
A351474_list = list(islice(A351474_gen(), 20)) # Chai Wah Wu, May 02 2023
CROSSREFS
Similar with largest digit k: A333402 (k=1), A341383 (k=2), A350814 (k=3), A351470 (k=4), A351471 (k=5), A351472 (k=6), A351473 (k=7), this sequence (k=8), A333237 (k=9).
Cf. A333236.
Decimal expansion of: A020806 (1/7), A021058 (1/54), A021060 (1/56), A021067 (1/63), A021069 (1/65), A021083 (1/79), A021097 (1/93).
Sequence in context: A062730 A287562 A341092 * A349854 A073255 A162194
KEYWORD
nonn,base
AUTHOR
STATUS
approved