login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A351474
Numbers m such that the largest digit in the decimal expansion of 1/m is 8.
6
7, 12, 14, 26, 28, 35, 48, 54, 55, 56, 63, 65, 70, 72, 78, 79, 93, 117, 120, 123, 125, 128, 140, 175, 176, 186, 192, 195, 205, 224, 239, 259, 260, 264, 280, 296, 312, 318, 328, 350, 372, 416, 432, 438, 448, 465, 480, 540, 542, 546, 548, 550, 555, 560, 572, 584, 594, 630, 632, 650, 675
OFFSET
1,1
COMMENTS
If k is a term, 10*k is also a term. First few primitive terms are 7, 12, 14, 26, 28, 35, 48, 54, 55, 56, 63, 65, 72, ...
The seven primes up to 2.7*10^8 are 7, 79, 239, 62003, 538987, 35121409, 265371653 (see comments in A333237, example section and Crossrefs).
FORMULA
A333236(a(n)) = 8.
EXAMPLE
As 1/7 = 0.142857142857142857..., 7 is a term.
As 1/26 = 0.0384615384615384615..., 26 is another term.
MATHEMATICA
f[n_] := Union[ Flatten[ RealDigits[ 1/n][[1]] ]]; Select[Range@1500000, Max@ f@# == 8 &]
PROG
(PARI) isok(m) = my(m2=valuation(m, 2), m5=valuation(m, 5)); vecmax(digits(floor(10^(max(m2, m5) + znorder(Mod(10, m/2^m2/5^m5))+1)/m))) == 8; \\ Michel Marcus, Feb 26 2022
(Python)
from itertools import count, islice
from sympy import multiplicity, n_order
def A351474_gen(startvalue=1): # generator of terms >= startvalue
for a in count(max(startvalue, 1)):
m2, m5 = (~a&a-1).bit_length(), multiplicity(5, a)
k, m = 10**max(m2, m5), 10**n_order(10, a//(1<<m2)//5**m5)-1
if max(max(str(c:=k//a)), max(str(m*k//a-c*m)))=='8':
yield a
A351474_list = list(islice(A351474_gen(), 20)) # Chai Wah Wu, May 02 2023
CROSSREFS
Similar with largest digit k: A333402 (k=1), A341383 (k=2), A350814 (k=3), A351470 (k=4), A351471 (k=5), A351472 (k=6), A351473 (k=7), this sequence (k=8), A333237 (k=9).
Cf. A333236.
Decimal expansion of: A020806 (1/7), A021058 (1/54), A021060 (1/56), A021067 (1/63), A021069 (1/65), A021083 (1/79), A021097 (1/93).
Sequence in context: A062730 A287562 A341092 * A349854 A073255 A162194
KEYWORD
nonn,base
AUTHOR
STATUS
approved