|
|
A351471
|
|
Numbers m such that the largest digit in the decimal expansion of 1/m is 5.
|
|
6
|
|
|
2, 4, 8, 18, 20, 22, 32, 40, 66, 74, 80, 180, 185, 198, 200, 220, 222, 320, 396, 400, 444, 492, 660, 666, 702, 704, 738, 740, 800, 803, 876, 1800, 1818, 1845, 1848, 1850, 1875, 1912, 1980, 1998, 2000, 2200, 2220, 2222, 2409, 2424, 2466, 2849, 3075, 3200, 3212, 3276, 3960, 3996, 4000
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
COMMENTS
|
If k is a term, 10*k is also a term.
First few primitive terms are 2, 4, 8, 18, 22, 32, 66, 74, 185, 198, 222, 396, ...
2 and 4649 are the only primes up to 2.6*10^8 (see comments in A333237).
Some subsequences:
{2, 22, 222, 2222, ...} = A002276 \ {0}.
{66, 666, 6666, ...} = A002280 \ {0, 6}.
{18, 1818, 181818, ...} = 18 * A094028.
|
|
LINKS
|
|
|
EXAMPLE
|
As 1/8 = 0.125, 8 is a term.
As 1/4649 = 0.000215121512151..., 4649 is a term.
|
|
MATHEMATICA
|
f[n_] := Union[ Flatten[ RealDigits[ 1/n][[1]] ]]; Select[Range@1500000, Max@ f@# == 5 &]
|
|
PROG
|
(Python)
from itertools import count, islice
from sympy import n_order, multiplicity
def A351471_gen(startvalue=1): # generator of terms >= startvalue
for m in count(max(startvalue, 1)):
m2, m5 = multiplicity(2, m), multiplicity(5, m)
if max(str(10**(max(m2, m5)+n_order(10, m//2**m2//5**m5))//m)) == '5':
yield m
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn,base
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|