OFFSET
0,4
COMMENTS
Generalization:
1/3 = Sum_{i >= 0} 7^i/10^(i+1);
1/93 = Sum_{i >= 0} 7^i/100^(i+1) (this sequence);
1/993 = Sum_{i >= 0} 7^i/1000^(i+1);
1/9993 = Sum_{i >= 0} 7^i/10000^(i+1), etc. - Daniel Forgues, Oct 28 2011
In other words, given n > 1, the decimal expansion of 1/(10^n - 3) contains the first n powers of 7 (including 7^0 = 1) separated by n - 1 zeroes. - Alonso del Arte, Aug 10 2017
LINKS
Index entries for linear recurrences with constant coefficients, signature (0,0,0,0,0,0,0,0,0,0,0,0,0,0,1).
EXAMPLE
0.010752688172043010752688172...
MATHEMATICA
RealDigits[1/93, 10, 100][[1]] (* Alonso del Arte, Aug 10 2017 *)
CROSSREFS
KEYWORD
AUTHOR
STATUS
approved