

A021097


Decimal expansion of 1/93.


1



0, 1, 0, 7, 5, 2, 6, 8, 8, 1, 7, 2, 0, 4, 3, 0, 1, 0, 7, 5, 2, 6, 8, 8, 1, 7, 2, 0, 4, 3, 0, 1, 0, 7, 5, 2, 6, 8, 8, 1, 7, 2, 0, 4, 3, 0, 1, 0, 7, 5, 2, 6, 8, 8, 1, 7, 2, 0, 4, 3, 0, 1, 0, 7, 5, 2, 6, 8, 8, 1, 7, 2, 0, 4, 3, 0, 1, 0, 7, 5, 2, 6, 8, 8, 1, 7, 2, 0, 4, 3, 0, 1, 0, 7, 5, 2, 6, 8, 8
(list;
constant;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,4


COMMENTS

Generalization:
1/3 = Sum_{i >= 0} 7^i/10^(i+1);
1/93 = Sum_{i >= 0} 7^i/100^(i+1) (this sequence);
1/993 = Sum_{i >= 0} 7^i/1000^(i+1);
1/9993 = Sum_{i >= 0} 7^i/10000^(i+1), etc.  Daniel Forgues, Oct 28 2011
In other words, given n > 1, the decimal expansion of 1/(10^n  3) contains the first n powers of 7 (including 7^0 = 1) separated by n  1 zeroes.  Alonso del Arte, Aug 10 2017


LINKS

Table of n, a(n) for n=0..98.
Index entries for linear recurrences with constant coefficients, signature (0,0,0,0,0,0,0,0,0,0,0,0,0,0,1).


EXAMPLE

0.010752688172043010752688172...


MATHEMATICA

RealDigits[1/93, 10, 100][[1]] (* Alonso del Arte, Aug 10 2017 *)


CROSSREFS

Cf. A010701, A000420.
Sequence in context: A212038 A112545 A021934 * A087273 A297879 A245510
Adjacent sequences: A021094 A021095 A021096 * A021098 A021099 A021100


KEYWORD

nonn,cons,easy


AUTHOR

N. J. A. Sloane.


STATUS

approved



