%I #22 Aug 23 2017 04:59:04
%S 0,1,0,7,5,2,6,8,8,1,7,2,0,4,3,0,1,0,7,5,2,6,8,8,1,7,2,0,4,3,0,1,0,7,
%T 5,2,6,8,8,1,7,2,0,4,3,0,1,0,7,5,2,6,8,8,1,7,2,0,4,3,0,1,0,7,5,2,6,8,
%U 8,1,7,2,0,4,3,0,1,0,7,5,2,6,8,8,1,7,2,0,4,3,0,1,0,7,5,2,6,8,8
%N Decimal expansion of 1/93.
%C Generalization:
%C 1/3 = Sum_{i >= 0} 7^i/10^(i+1);
%C 1/93 = Sum_{i >= 0} 7^i/100^(i+1) (this sequence);
%C 1/993 = Sum_{i >= 0} 7^i/1000^(i+1);
%C 1/9993 = Sum_{i >= 0} 7^i/10000^(i+1), etc. - _Daniel Forgues_, Oct 28 2011
%C In other words, given n > 1, the decimal expansion of 1/(10^n - 3) contains the first n powers of 7 (including 7^0 = 1) separated by n - 1 zeroes. - _Alonso del Arte_, Aug 10 2017
%H <a href="/index/Rec">Index entries for linear recurrences with constant coefficients</a>, signature (0,0,0,0,0,0,0,0,0,0,0,0,0,0,1).
%e 0.010752688172043010752688172...
%t RealDigits[1/93, 10, 100][[1]] (* _Alonso del Arte_, Aug 10 2017 *)
%Y Cf. A010701, A000420.
%K nonn,cons,easy
%O 0,4
%A _N. J. A. Sloane_.