Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #17 Jul 05 2016 08:30:48
%S 399,299,55,611,143,5549,39,155,493,615383,713,3247,119,1304489,1333,
%T 31415,2599,749,2183,440153,155,75499,119,168600949,4223,223649,559,
%U 66299,6407,15157,3431,85499,799,31589,7313
%N a(n) is the smallest composite squarefree number k such that (p+n) | (k+1) for all primes dividing k.
%e Prime factors of 399 are 3, 7 and 19. (399 + 1) / (3 + 1) = 400 / 4 = 100, (399 + 1) / (7 + 1) = 400 / 8 = 50 and (399 + 1) / (19 + 1) = 400 / 20 = 20.
%e Prime factors of 299 are 13 and 23. (399 + 1) / (13 + 2) = 300 / 15 = 20 and (399 + 1) / (23 + 2) = 300 / 25 = 12.
%p with(numtheory); P:=proc(q) local d,k,n,ok,p;
%p for k from 1 to q do for n from 2 to q do
%p if not isprime(n) and issqrfree(n) then p:=ifactors(n)[2]; ok:=1;
%p for d from 1 to nops(p) do
%p if not type((n+1)/(p[d][1]+k),integer) then ok:=0; break; fi; od;
%p if ok=1 then print(n); break; fi; fi; od; od; end: P(10^9);
%t t = Select[Range[2000000], SquareFreeQ@ # && CompositeQ@ # &]; Table[SelectFirst[t, Function[k, AllTrue[First /@ FactorInteger@ k, Divisible[k + 1, # + n] &]]], {n, 23}] (* _Michael De Vlieger_, Jun 24 2016, Version 10 *)
%o (PARI) isok(k,n) = {if (! issquarefree(k), return (0)); vp = factor(k) [,1]; if (#vp == 1, return (0)); for (i=1, #vp, if ((k+1) % (n+vp[i]), return (0));); 1;}
%o a(n) = {my(k=2); while (! isok(k,n), k++); k;} \\ _Michel Marcus_, Jun 28 2016
%Y Cf. A208728, A225702-A225720, A226020, A226111-A226114, A226364, A226448, A228299-A228302, A229273-A229276, A229321-A229324, A274443, A274444, A274445.
%K nonn,easy
%O 1,1
%A _Paolo P. Lava_, Jun 23 2016
%E a(24) from _Giovanni Resta_, Jun 23 2016