The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 56th year, we are closing in on 350,000 sequences, and we’ve crossed 9,700 citations (which often say “discovered thanks to the OEIS”).

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A290306 Number of permutations of the multiset {1,1,2,2,...,2n,2n} having exactly n ascents and no number smaller than k between the two occurrences of any number k. 3
 1, 2, 58, 4400, 644020, 155357384, 56041398784, 28299910066112, 19076135772884080, 16558710676700081120, 17997592513561138205728, 23948993629880321407298816, 38303802347672648465676584704, 72510806370598644118983905976320, 160368191672482402606757066578885120 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 REFERENCES R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics, 2nd ed. Addison-Wesley, Reading, MA, 1994, p. 270. LINKS Alois P. Heinz, Table of n, a(n) for n = 0..206 Wikipedia, Eulerian numbers of the second kind FORMULA a(n) = A201637(2n,n) = A288874(2n,n) = <<2n,n>>, with <<.,.>> = second order Eulerian numbers or Eulerian numbers of the second kind. a(n) ~ c * d^n * n^(2*n - 1/2), where d = 1.6899458441572699524424834032837129180107588318196320162637478870996171397... and c = 3.5414537300298411499842602111667139605122817390785452902057395704515855797... - Vaclav Kotesovec, Aug 11 2018 EXAMPLE a(1) = 2: 1122, 1221. a(2) = 58: 11224433, 11244332, 11332244, 11332442, 11334422, 11344322, ..., 44112233, 44112332, 44122133, 44122331, 44123321, 44133122. MAPLE a:= n-> combinat[eulerian2](2*n, n): seq(a(n), n=0..20); # second Maple program: b:= proc(n, k) option remember; `if`(k<0 or k>n, 0,      `if`(n=0, 1, (2*n-k-1)*b(n-1, k-1)+(k+1)*b(n-1, k)))     end: a:= n-> b(2*n, n): seq(a(n), n=0..20); MATHEMATICA b[n_, k_]:=b[n, k]=If[k<0 || k>n, 0, If[n==0, 1, (2*n - k  - 1)*b[n - 1, k - 1] + (k + 1)*b[n - 1, k]]]; Table[b[2n, n], {n, 0, 20}] (* Indranil Ghosh, Jul 27 2017, after second Maple program *) Flatten[{1, Table[Sum[(-1)^(n-k) * Binomial[4*n + 1, n - k] * StirlingS1[2*n + k, k], {k, 1, n}], {n, 1, 15}]}] (* Vaclav Kotesovec, Aug 11 2018 *) CROSSREFS Cf. A008517, A201637, A112007, A163936, A288874. Sequence in context: A341082 A191798 A206531 * A113635 A136095 A181866 Adjacent sequences:  A290303 A290304 A290305 * A290307 A290308 A290309 KEYWORD nonn AUTHOR Alois P. Heinz, Jul 26 2017 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 2 08:31 EST 2021. Contains 349437 sequences. (Running on oeis4.)