OFFSET
0,9
FORMULA
EXAMPLE
Triangle starts:
[0] 1;
[1] 0;
[2] 0, 1;
[3] 0, 1;
[4] 0, 1, 6;
[5] 0, 1, 20;
[6] 0, 1, 50, 75;
[7] 0, 1, 112, 525;
[8] 0, 1, 238, 2450, 1575;
[9] 0, 1, 492, 9590, 18900;
MAPLE
A352607 := (n, k) -> combinat:-bell(k)*add((-1)^(k+j)*binomial(n, n-k+j)* Stirling2(n-k+j, j), j = 0..k):
seq(seq(A352607(n, k), k = 0..n/2), n = 0..12);
# Second program:
egf := k -> combinat[bell](k)*(exp(x) - 1 - x)^k/k!:
A352607 := (n, k) -> n! * coeff(series(egf(k), x, n+1), x, n):
seq(print(seq(A352607(n, k), k = 0..n/2)), n=0..12);
# Recurrence:
A352607 := proc(n, k) option remember;
if k > n/2 then 0 elif k = 0 then k^n else k*A352607(n-1, k) +
combinat[bell](k)/combinat[bell](k-1)*(n-1)*A352607(n-2, k-1) fi end:
seq(print(seq(A352607(n, k), k=0..n/2)), n=0..12); # Mélika Tebni, Mar 24 2022
MATHEMATICA
T[n_, k_] := BellB[k]*Sum[(-1)^(k+j)*Binomial[n, n-k+j]*StirlingS2[n-k+j, j], {j, 0, k}]; Table[T[n, k], {n, 0, 12}, {k, 0, Floor[n/2]}] // Flatten (* Jean-François Alcover, Oct 21 2023 *)
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Peter Luschny and Mélika Tebni, Mar 23 2022
STATUS
approved