login
A343226
a(n) = gcd(sigma(n), n+A003415(n)), where A003415 is the arithmetic derivative, and sigma is the sum of divisors of n.
5
1, 3, 4, 1, 6, 1, 8, 5, 1, 1, 12, 28, 14, 1, 1, 1, 18, 39, 20, 2, 1, 1, 24, 4, 1, 1, 2, 4, 30, 1, 32, 7, 1, 1, 1, 1, 38, 1, 1, 18, 42, 1, 44, 4, 6, 1, 48, 4, 3, 1, 1, 2, 54, 15, 1, 4, 1, 1, 60, 8, 62, 1, 2, 1, 1, 1, 68, 14, 1, 3, 72, 3, 74, 1, 2, 4, 1, 1, 80, 2, 1, 1, 84, 16, 1, 1, 1, 12, 90, 3, 1, 4, 1, 1, 1, 4
OFFSET
1,2
COMMENTS
a(n) = n+1 iff n is prime (A000040). - Bernard Schott, Jun 01 2021
FORMULA
a(n) = gcd(A000203(n), A129283(n)) = gcd(A000203(n), A211991(n)).
a(n) = A000203(n) / A343227(n).
a(n) = 1 if n is squarefree semiprime (A006881). - Bernard Schott, Jun 02 2021
PROG
(PARI)
A003415(n) = if(n<=1, 0, my(f=factor(n)); n*sum(i=1, #f~, f[i, 2]/f[i, 1]));
A129283(n) = (n+A003415(n));
A343226(n) = gcd(sigma(n), A129283(n));
CROSSREFS
KEYWORD
nonn
AUTHOR
Antti Karttunen, Apr 15 2021
STATUS
approved