login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A182053
G.f. satisfies: A(x) = (1+x*A(x))*(1+x^2*A(x))*(1+x^3*A(x)).
7
1, 1, 2, 5, 11, 26, 64, 159, 402, 1032, 2677, 7010, 18510, 49220, 131691, 354282, 957745, 2600382, 7088008, 19388719, 53207441, 146444424, 404151643, 1118132954, 3100540971, 8615945102, 23989662824, 66917894562, 186983937758, 523314016245, 1466807316032
OFFSET
0,3
LINKS
FORMULA
Recurrence: 5*(n+2)*(n+3)*(8911*n^7 - 241946*n^6 + 2447725*n^5 - 11084372*n^4 + 19415458*n^3 + 1716316*n^2 - 23882064*n + 2130912)*a(n) = 3*(n+2)*(35644*n^8 - 914318*n^7 + 8350054*n^6 - 29810773*n^5 + 11813540*n^4 + 124863372*n^3 - 96624130*n^2 - 116648601*n + 36899532)*a(n-1) + (17822*n^9 - 448248*n^8 + 3870267*n^7 - 11783352*n^6 - 5744844*n^5 + 67908444*n^4 - 29523545*n^3 - 131900220*n^2 - 65428308*n - 24231312)*a(n-2) + (178220*n^9 - 4749810*n^8 + 45912714*n^7 - 180749091*n^6 + 117079677*n^5 + 903637509*n^4 - 1481741315*n^3 - 502308600*n^2 + 1275968592*n - 5383800)*a(n-3) - 3*(26733*n^9 - 752571*n^8 + 7896778*n^7 - 35859478*n^6 + 44913322*n^5 + 151779908*n^4 - 435106847*n^3 + 135598205*n^2 + 327138534*n - 194418504)*a(n-4) + (17822*n^9 - 528447*n^8 + 6031992*n^7 - 32027385*n^6 + 65161374*n^5 + 61817937*n^4 - 383729654*n^3 + 245358135*n^2 + 217471338*n - 55404648)*a(n-5) + 2*(17822*n^9 - 555180*n^8 + 6785304*n^7 - 40187787*n^6 + 104743872*n^5 + 17193252*n^4 - 685093274*n^3 + 1082675799*n^2 + 285222672*n - 1131441048)*a(n-6) - (17822*n^9 - 581913*n^8 + 7681743*n^7 - 51193035*n^6 + 163962759*n^5 - 87813864*n^4 - 868874108*n^3 + 1698086052*n^2 + 415801800*n - 1243151064)*a(n-7) - (35644*n^9 - 1217292*n^8 + 16363266*n^7 - 106473036*n^6 + 307618491*n^5 - 35551263*n^4 - 1688725327*n^3 + 2463079431*n^2 + 830567142*n - 2522003904)*a(n-8) + (n-8)*(35644*n^8 - 985606*n^7 + 10067008*n^6 - 43505557*n^5 + 43567930*n^4 + 201854264*n^3 - 417755448*n^2 - 116443773*n + 335593314)*a(n-9) - (n-9)*(n-8)*(8911*n^7 - 179569*n^6 + 1183180*n^5 - 2163052*n^4 - 4971815*n^3 + 14491649*n^2 + 4308780*n - 9489060)*a(n-10). - Vaclav Kotesovec, Mar 25 2014
a(n) ~ sqrt((s*(2-r-r^3*(s-1)+r^5*s))/(1+r+r^2+3*r^3*s))/ (2*sqrt(Pi)* n^(3/2)*r^(n+3/2)), where r = 0.34048516736982998257..., s = 3.7980384578075501949... are roots of the system of equations r + r^2 + r^3 + 2*r^3*s + 2*r^4*s + 2*r^5*s + 3*r^6*s^2 = 1, and (1 + r*s)*(1 + r^2*s)*(1 + r^3*s) = s. - Vaclav Kotesovec, Mar 25 2014
EXAMPLE
G.f.: A(x) = 1 + x + 2*x^2 + 5*x^3 + 11*x^4 + 26*x^5 + 64*x^6 + 159*x^7 +...
Related expansions:
A(x)^2 = 1 + 2*x + 5*x^2 + 14*x^3 + 36*x^4 + 94*x^5 + 249*x^6 + 660*x^7 +...
A(x)^3 = 1 + 3*x + 9*x^2 + 28*x^3 + 81*x^4 + 231*x^5 + 656*x^6 + 1848*x^7 +...
where A(x) = 1 + x*(1+x+x^2)*A(x) + x^3*(1+x+x^2)*A(x)^2 + x^6*A(x)^3.
The logarithm of the g.f. begins:
log(A(x)) = x + 3*x^2/2 + 10*x^3/3 + 23*x^4/4 + 61*x^5/5 + 168*x^6/6 + 456*x^7/7 + 1255*x^8/8 + 3493*x^9/9 + 9753*x^10/10 +...
PROG
(PARI) {a(n)=local(A=1+x); for(i=1, n, A=(1+x*A)*(1+x^2*A)*(1+x^3*A)+x*O(x^n)); polcoeff(A, n)}
for(n=0, 40, print1(a(n), ", "))
CROSSREFS
Cf. A004148.
Sequence in context: A192475 A192400 A308154 * A306563 A308060 A235496
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Apr 08 2012
STATUS
approved