OFFSET
0,1
LINKS
Cesar Bautista, Table of n, a(n) for n = 0..499
C. Bautista-Ramos and C. Guillen-Galvan, Fibonacci numbers of generalized Zykov sums, J. Integer Seq., 15 (2012), Article 12.7.8.
Stephan G. Wagner, The Fibonacci Number of Generalized Petersen Graphs, Fibonacci Quarterly, 44 (2006), 362-367.
Index entries for linear recurrences with constant coefficients, signature (3,15,3,-13,4).
FORMULA
a(n) = 3*a(n-1)+15*a(n-2)+3*a(n-3)-13*a(n-4)+4*a(n-5) with a(0)=8, a(1)=3, a(2)=39, a(3)=171, a(4)=1055, a(5)=5828.
G.f.: ((6*x^2-11*x-8)*(2*x^3-5*x^2-4*x+1)) / (4*x^5-13*x^4+3*x^3+15*x^2+3*x-1).
CROSSREFS
KEYWORD
nonn,easy,changed
AUTHOR
Cesar Bautista, Apr 08 2012
STATUS
approved