login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A182054
Number of independent sets of nodes in the generalized Petersen graph G(2n,2) (n>=0).
1
8, 3, 39, 171, 1055, 5828, 33327, 188499, 1069855, 6065487, 34399844, 195074223, 1106262671, 6273528979, 35576813647, 201753798116, 1144133068159, 6488305791115, 36794770328583, 208660804936031, 1183302172416580, 6710431459264095, 38054430587741959
OFFSET
0,1
LINKS
C. Bautista-Ramos and C. Guillen-Galvan, Fibonacci numbers of generalized Zykov sums, J. Integer Seq., 15 (2012), Article 12.7.8.
Stephan G. Wagner, The Fibonacci Number of Generalized Petersen Graphs, Fibonacci Quarterly, 44 (2006), 362-367.
FORMULA
a(n) = 3*a(n-1)+15*a(n-2)+3*a(n-3)-13*a(n-4)+4*a(n-5) with a(0)=8, a(1)=3, a(2)=39, a(3)=171, a(4)=1055, a(5)=5828.
G.f.: ((6*x^2-11*x-8)*(2*x^3-5*x^2-4*x+1)) / (4*x^5-13*x^4+3*x^3+15*x^2+3*x-1).
CROSSREFS
Cf. A182077.
Sequence in context: A370564 A004734 A287645 * A302214 A049074 A286034
KEYWORD
nonn,easy
AUTHOR
Cesar Bautista, Apr 08 2012
STATUS
approved