Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #25 Jan 05 2025 19:51:39
%S 8,3,39,171,1055,5828,33327,188499,1069855,6065487,34399844,195074223,
%T 1106262671,6273528979,35576813647,201753798116,1144133068159,
%U 6488305791115,36794770328583,208660804936031,1183302172416580,6710431459264095,38054430587741959
%N Number of independent sets of nodes in the generalized Petersen graph G(2n,2) (n>=0).
%H Cesar Bautista, <a href="/A182054/b182054.txt">Table of n, a(n) for n = 0..499</a>
%H C. Bautista-Ramos and C. Guillen-Galvan, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL15/Bautista/bautista4.html">Fibonacci numbers of generalized Zykov sums</a>, J. Integer Seq., 15 (2012), Article 12.7.8.
%H Stephan G. Wagner, <a href="https://web.archive.org/web/2024*/https://www.fq.math.ca/Papers1/44-4/quartwagner04_2006.pdf">The Fibonacci Number of Generalized Petersen Graphs</a>, Fibonacci Quarterly, 44 (2006), 362-367.
%H <a href="/index/Rec#order_05">Index entries for linear recurrences with constant coefficients</a>, signature (3,15,3,-13,4).
%F a(n) = 3*a(n-1)+15*a(n-2)+3*a(n-3)-13*a(n-4)+4*a(n-5) with a(0)=8, a(1)=3, a(2)=39, a(3)=171, a(4)=1055, a(5)=5828.
%F G.f.: ((6*x^2-11*x-8)*(2*x^3-5*x^2-4*x+1)) / (4*x^5-13*x^4+3*x^3+15*x^2+3*x-1).
%Y Cf. A182077.
%K nonn,easy,changed
%O 0,1
%A _Cesar Bautista_, Apr 08 2012