login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A182057
Expansion of psi(x) * f(x^4) / (psi(x^3) * f(x^6) * chi(-x^24)) in powers of x where psi(), chi(), f() are Ramanujan theta functions.
2
1, 1, 0, 0, 0, 1, 0, 0, -2, -3, 0, 0, 4, 1, 0, 0, -1, 5, 0, 0, -8, -10, 0, 0, 14, 4, 0, 0, -4, 17, 0, 0, -23, -31, 0, 0, 40, 9, 0, 0, -10, 46, 0, 0, -60, -79, 0, 0, 98, 21, 0, 0, -24, 112, 0, 0, -140, -183, 0, 0, 224, 46, 0, 0, -54, 249, 0, 0, -304, -396, 0
OFFSET
0,9
COMMENTS
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
LINKS
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
FORMULA
Expansion of q^(-2/3) * eta(q^2)^2 * eta(q^3) * eta(q^8)^3 * eta(q^48) / (eta(q) * eta(q^4) * eta(q^6) * eta(q^12)^3 * eta(q^16)) in powers of q.
Euler transform of period 48 sequence [1, -1, 0, 0, 1, -1, 1, -3, 0, -1, 1, 3, 1, -1, 0, -2, 1, -1, 1, 0, 0, -1, 1, 0, 1, -1, 0, 0, 1, -1, 1, -2, 0, -1, 1, 3, 1, -1, 0, -3, 1, -1, 1, 0, 0, -1, 1, 0, ...].
a(4*n + 2) = a(4*n + 3) = 0. a(4*n) = A182032(12*n + 2). a(4*n + 1) = A182032(12*n + 5).
Expansion of psi(x) * f(x^4) / (f(x^3) * phi(x^6) * chi(x^12)) in powers of x where phi(), psi(), f() are Ramanujan theta functions. - Michael Somos, Aug 10 2017
EXAMPLE
G.f. = 1 + x + x^5 - 2*x^8 - 3*x^9 + 4*x^12 + x^13 - x^16 + 5*x^17 - 8*x^20 + ...
G.f. = q^2 + q^5 + q^17 - 2*q^26 - 3*q^29 + 4*q^38 + q^41 - q^50 + 5*q^53 + ...
MATHEMATICA
eta[x_] := x^(1/24)*QPochhammer[x]; A182057[n_] := SeriesCoefficient[ q^(-2/3)*eta[q^2]^2*eta[q^3]*eta[q^8]^3*eta[q^48]/(eta[q]*eta[q^4]* eta[q^6]*eta[q^12]^3 *eta[q^16]), {q, 0, n}]; Table[A182057[n], {n, 0, 50}] (* G. C. Greubel, Aug 10 2017 *)
PROG
(PARI) {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^2 + A)^2 * eta(x^3 + A) * eta(x^8 + A)^3 * eta(x^48 + A) / (eta(x + A) * eta(x^4 + A) * eta(x^6 + A) * eta(x^12 + A)^3 * eta(x^16 + A)), n))}
CROSSREFS
Cf. A182032.
Sequence in context: A011023 A284610 A234017 * A260928 A097027 A072741
KEYWORD
sign
AUTHOR
Michael Somos, Apr 08 2012
STATUS
approved