login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A004734
Numerator of average distance traveled by n-dimensional fly.
1
1, 8, 3, 32, 5, 64, 35, 512, 63, 1024, 231, 4096, 429, 8192, 6435, 131072, 12155, 262144, 46189, 1048576, 88179, 2097152, 676039, 16777216, 1300075, 33554432, 5014575, 134217728, 9694845, 268435456, 300540195
OFFSET
1,2
COMMENTS
The average distance is actually d(n) = 2*n!!/(n+1)!! if n is odd, and d(n) = (1*Pi)*4*n!!/(n+1)!! if n is even. So a(n) = numerator(d(n)) if n is odd and a(n) = numerator(Pi*d(n)) if n is even. - Michel Marcus, May 24 2013
REFERENCES
S. Janson, On the traveling fly problem, Graph Theory Notes of New York, Vol. XXXI, 17, 1996.
PROG
(PARI) a(n) = {if (n % 2, eo = 2, eo = 4); numerator(eo*prod(i=0, floor((n-1)/2), n-2*i)/prod(i=0, floor(n/2), n+1-2*i)); } \\ Michel Marcus, May 24 2013
CROSSREFS
Cf. A004735.
Sequence in context: A213838 A248294 A370564 * A287645 A182054 A302214
KEYWORD
nonn,frac
STATUS
approved